Skip to main content
Log in

How to park freight trains on rail–rail transshipment yards: the train location problem

  • Published:
OR Spectrum Aims and scope Submit manuscript

Abstract

In modern rail–rail transshipment yards huge gantry cranes spanning all railway tracks allow for an efficient transshipment of containers between different freight trains. This way, multiple trains loaded with cargo for varying destinations can be consolidated to a reduced number of homogeneous trains, which is an essential requirement of hub-and-spoke railway systems. An important problem during the daily operations of such a transshipment yard is the train location problem, which assigns each train of a given pulse to a railway track (vertical position) and decides on each train’s parking position on the track (horizontal position), so that the distances of container movements are minimized and the overall workload is equally shared among cranes. For this problem a mathematical model is presented; different heuristic solution procedures are described and tested in a comprehensive computational study. The results show that our procedures allow for a remarkable reduction of train processing time compared with typical real-world train location policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarts EHL, Korst JHM, van Laarhoven JM (1997) Simulated annealing. In: Aarts EHL, Lenstra JK (eds) Local search in combinatorial optimization. Wiley, Chichester, pp 91–120

    Google Scholar 

  • Abacoumkin C, Ballis A (2004) Development of an expert system for the evaluation of conventional and innovative technologies in the intermodal transport area. Eur J Oper Res 152: 410–419

    Article  Google Scholar 

  • Alicke K (2002) Modeling and optimization of the intermodal terminal Mega Hub. OR Spectrum 24: 1–17

    Article  Google Scholar 

  • Alicke K, Arnold D (1998) Optimierung von mehrstufigen Umschlagsystemen. Fördern und Heben 8: 769–772

    Google Scholar 

  • Ballis A, Golias J (2002) Comparative evaluation of existing and innovative rail-road freight transport terminals. Transp Res A 26: 593–611

    Google Scholar 

  • Ballis A, Golias J (2004) Towards the improvement of a combined transport chain performance. Eur J Oper Res 152: 420–436

    Article  Google Scholar 

  • Blasum U, Bussieck MR, Hochstättler W, Moll C, Scheel H-H, Winter T (2000) Scheduling trams in the morning. Math Methods Oper Res 49: 137–148

    Google Scholar 

  • Bontekoning YM, Macharis C, Trip JJ (2004) Is a new applied transportation research field emerging? A review of intermodal rail-truck freight transport literature. Transp Res A 38: 1–24

    Google Scholar 

  • Bostel N, Dejax P (1998) Models and algorithms for container allocation problems on trains in a rapid transshipment shunting yard. Transp Sci 32: 370–379

    Article  Google Scholar 

  • Boysen N, Fliedner M (2009) Determinig crane areas in intermodal transshipment yards: the yard partition problem. Eur J Oper Res 204: 336–342

    Article  Google Scholar 

  • Boysen N, Fliedner M, Kellner M (2010a) Determining fixed crane areas in rail-rail transshipment yards. Transp Res E 46: 1005–1016

    Article  Google Scholar 

  • Boysen N, Jaehn F, Pesch E (2010b) Scheduling freight trains in rail-rail transhipment yards. Transp Sci (to appear)

  • Boysen N, Jaehn F, Pesch E (2010c) New bounds and algorithms for the transshipment yard scheduling problem. J Sched. doi:10.1007/s10951-010-0200-2 (in press)

  • Cordeau J-F, Toth P, Vigo D (1998) A survey of optimization models for train routing and scheduling. Transp Sci 32: 380–404

    Article  Google Scholar 

  • Corry P, Kozan E (2006) An assignment model for dynamic load planning of intermodal trains. Comput Oper Res 33: 1–17

    Article  Google Scholar 

  • Corry P, Kozan E (2008) Optimised loading patterns for intermodal trains. OR Spectrum 30: 721–750

    Article  Google Scholar 

  • Crainic TG, Kim KH (2007) Intermodal transport. In: Barnhart C, Laporte G (eds) Transportation. Handbooks in operations research and management science, vol 14, pp 467–538

  • Dahlhaus E, Horak P, Miller M, Ryan JF (2000) The train marshalling problem. Discrete Appl Math 103: 41–54

    Article  Google Scholar 

  • Ding H, Lim A, Rodrigues B, Zhu Y (2005) The over-constrained airport gate assignment problem. Comput Oper Res 32: 1867–1880

    Article  Google Scholar 

  • Dorndorf U, Drexl A, Nikulin Y, Pesch E (2007) Flight gate scheduling: state-of-the-art and recent developements. Omega 35: 326–334

    Article  Google Scholar 

  • EU (2007) Mitteilung der Kommission an den Rat und das europäische Parlament: Aufbau eines vorrangig für den Güterverkehr bestimmten Schienennetzes. Brüssel

  • Finke G, Burkard RE, Rendl F (1987) Quadratic assignment problems. Ann Discrete Math 31: 61–82

    Google Scholar 

  • Freling R, Lentink RM, Kroon LG, Huisman D (2005) Shunting of passenger train units in a railway station. Transp Sci 39: 261–272

    Article  Google Scholar 

  • Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W.H. Freeman, San Francisco

    Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Boston

    Google Scholar 

  • He S, Song R, Chaudhry SS (2000) Fuzzy dispatching model and genetic algorithms for railyards operations. Eur J Oper Res 124: 307–331

    Article  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220: 671–680

    Article  Google Scholar 

  • Lim A, Rodrigues B, Xu Z (2007) A m-parallel crane scheduling problem with a non-crossing constraint. Nav Res Logist 54: 115–235

    Article  Google Scholar 

  • Macharis C, Bontekoning YM (2004) Opportunities for OR in intermodal freight transport research: A review. Eur J Oper Res 153: 400–416

    Article  Google Scholar 

  • Martinez FM, Gutierrez IG, Oliveira AO, Bedia LMA (2004) Gantry crane operations to transfer containers between trains: a simulation study of a Spanish terminal. Transp Plan Technol 27: 261–284

    Article  Google Scholar 

  • Meyer P (1998) Entwicklung eines Simulationsprogramms für Umschlagterminals des Kombinierten Verkehrs. PhD thesis, Universität Hannover

  • Moccia L, Cordeau JF, Gaudioso M, Laporte G (2006) A branch-and-cut algorithm for the quay crane scheduling problem in a container terminal. Nav Res Logist 53: 45–59

    Article  Google Scholar 

  • Montemanni R, Rizzoli AE, Smith DH, Gambardella LM (2009) Sequential ordering problems for crane scheduling in port terminals. Int J Simul Process Model 5: 348–361

    Article  Google Scholar 

  • Ng WC (2005) Crane scheduling in container yards with inter-crane interference. Eur J Oper Res 164: 64–78

    Article  Google Scholar 

  • Reeves CR (1993) Modern heuristic techniques for combinatorial problems. Blackwell, Oxford

    Google Scholar 

  • Reeves CR (1997) Genetic algorithms for the operations researcher. INFORMS J Comput 9: 231–250

    Article  Google Scholar 

  • Rotter H (2004) New operating concepts for intermodal transport: the Mega Hub in Hanover/Lehrte in Germany. Transp Plan Technol 27: 347–365

    Article  Google Scholar 

  • Sahni S, Gonzalez T (1976) P-complete approximation problems. J Assoc Comput Mach 23: 555–565

    Article  Google Scholar 

  • Sammarra M, Cordeau JF, Laporte G, Monaco MF (2007) A tabu search heuristic for the quay crane scheduling problem. J Sched 10: 327–336

    Article  Google Scholar 

  • Smith JE (2007) Coevolving memetic algorithms: A review and progress report”. IEEE Trans Syst Man Cybern B 37: 6–17

    Article  Google Scholar 

  • Souffriau W, Vansteenwegen P, Vanden Berghe G, Van Oudheusden D (2009) A variable neighbourhood descent metaheuristic for planning crane operations in a train terminal. In: Geiger M, Habenicht W, Sevaux M, Sörensen K (eds) Metaheuristics in the service industry. Lecture notes in economics and mathematical systems, vol 624, pp 15–31

  • Stahlbock R, Voß S (2008) Operations research at container terminals: a literature update. OR Spectrum 30: 1–52

    Article  Google Scholar 

  • Steenken D, Stahlbock R, Voß S (2004) Container terminal operation and operations research—a classification and literature review. OR Spectrum 26: 3–49

    Article  Google Scholar 

  • Wiegmans BW, Stekelenburg DT, Versteegt C, Bontekoning YM (2006) Modeling rail-rail exchange operations: an analysis of conventional and new-generation terminals. Transp J 3: 5–20

    Google Scholar 

  • Winter T, Zimmermann UT (2000) Real-time dispatch of trams in storage yards. Ann Oper Res 96: 287–315

    Article  Google Scholar 

  • Zhu Y, Lim A (2006) Crane scheduling with non-crossing contraints. J Oper Res Soc 57: 1472–1481

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Boysen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kellner, M., Boysen, N. & Fliedner, M. How to park freight trains on rail–rail transshipment yards: the train location problem. OR Spectrum 34, 535–561 (2012). https://doi.org/10.1007/s00291-011-0246-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00291-011-0246-3

Keywords

Navigation