Skip to main content

Advertisement

Log in

A stochastic programming approach to determine robust delivery profiles in area forwarding inbound logistics networks

  • Regular Article
  • Published:
OR Spectrum Aims and scope Submit manuscript

Abstract

One technique to coordinate the suppliers’ and the producers’ production plans in a supply chain is the use of delivery profiles, which provide fixed delivery frequencies for all suppliers. The selection of a delivery profile assignment has major effects on the cost efficiency and the robustness of a supply chain and thus should be performed carefully. In this work, we consider planning approaches to select delivery profiles for the case of area forwarding-based inbound logistics networks, which are commonly used in several industries to consolidate supplies in an early stage of transport. We present a two-stage stochastic mixed integer linear programming model to determine robust delivery profile assignments under uncertain and infrequent demands and complex tariff systems. The model is embedded into a solution framework consisting of scenario generation and reduction techniques, a decomposition approach, a genetic algorithm, and a standard MILP solver. On the basis of an industrial case study, we show that our approach is computationally feasible and that the planning solutions obtained by our model outperform both a deterministic approach and the planning methodology prevailing in industrial practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aksoy Y, Erenguc SS (1988) Multi-item inventory models with co-ordinated replenishments: a survey. Int J Oper Prod Manag 8(1): 63–73. doi:10.1108/eb054814. http://www.emeraldinsight.com/10.1108/eb054814

  • Andler K (1929) Rationalisierung der Fabrikation und optimale Losgröße

  • Benton W (1991) Quantity discount decisions under conditions of multiple items, multiple suppliers and resource limitations. Int J Prod Res 29(10):1953–1961

    Article  Google Scholar 

  • Benton W, Park S (1996) A classification of literature on determining the lot size under quantity discounts. Eur J Oper Res 92(2):219–238

    Article  Google Scholar 

  • Blumenfeld D, Burns L, Daganzo C, Frick M, Hall R (1985) Reducing logistics costs at general motors. Interfaces 17(1):26–47

    Article  Google Scholar 

  • Boctor FF, Laporte G, Renaud J (2004) Models and algorithms for the dynamic-demand joint replenishment problem. Int J Prod Res 42(13):2667–2678. doi:10.1080/00207540410001671660

    Article  Google Scholar 

  • Bookbinder JH, Tan JY (1988) Strategies for the probabilistic lot-sizing problem with service-level constraints. Manag Sci 34(9):1096–1109

    Article  Google Scholar 

  • Bregman RL, Silver EA (1993) A modification of the silver–meal heuristic to handle MRP purchase discount situations. J Oper Res Soc 44(7):717–723

    Google Scholar 

  • Burns L, Hall R, Blumenfeld D, Daganzo C (1985) Distribution strategies that minimize transportation inventory costs. Oper Res 33:469–490

    Article  Google Scholar 

  • Buschkühl L, Sahling F, Helber S, Tempelmeier H (2008) Dynamic capacitated lot-sizing problems: a classification and review of solution approaches. OR Spectrum 32(2):231–261. doi:10.1007/s00291-008-0150-7. http://www.springerlink.com/index/10.1007/s00291-008-0150-7

  • Cetinkaya S, Mutlu F, Lee CY (2006) A comparison of outbound dispatch policies for integrated inventory and transportation decisions. Eur J Oper Res 171:1094–1112

    Article  Google Scholar 

  • Chakravarty AK (1984) Joint inventory replenishments with group discounts based on invoice value. Manag Sci 30(9):1105–1112

    Article  Google Scholar 

  • Chen Ps (2005) Cost minimalization in multi-commodity, multi-mode generalized networks with time windows. Ph.D. thesis, Texas A & M University

  • Crainic TG (2000) Service network design in freight transportation. Eur J Oper Res 122(2):272–288

    Article  Google Scholar 

  • Crainic TG, Rousseau Jm (1986) Multicommodity, multimode freight transportation: a general modeling and algorithmic framework for the service network design problem. Transp Res Part B Methodol 20(3):225–242

    Article  Google Scholar 

  • DeMatteis JJ (1968) An economic lot-sizing technique, I: the part-period algorithm. IBM Syst J 7(1):30–38. doi:10.1147/sj.71.0030

    Article  Google Scholar 

  • Drexl A, Kimms A (1997) Lot sizing and scheduling—survey and extensions. Eur J Oper Res 99(2):221–235

    Article  Google Scholar 

  • Fahle T, Schamberger S, Sellmann M (2001) Symmetry breaking. In: Walsh T (ed) Principles and practice of constraint programming CP 2001. Lecture notes in computer science, vol 2239. Springer, Berlin. pp 93–107. doi:10.1007/3-540-45578-7_7

  • Federgruen A, Lee CY (1990) The dynamic lot size model with quantity discount. Naval Res Logist 37(5):707–713

    Article  Google Scholar 

  • Geunes J, Pardalos P (2003) Network optimization in supply chain management and financial engineering: an annotated bibliography. Networks 42(2):66–84

    Article  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization and, machine learning

  • Goyal SK, Satir AT (1989) Joint replenishment inventory control: deterministic and stochastic models. Eur J Oper Res 38(1):2–13

    Article  Google Scholar 

  • Harris FW (1913) How many parts to make at once. Factory, The Magazine of Management. 10(2):135–136. doi:10.1287/opre.38.6.947

  • Heitsch H, Römisch W (2003) Scenario reduction algorithms in stochastic programming. Comput Optim Appl 24:187–206

    Article  Google Scholar 

  • Jans R, Degraeve Z (2008) Modeling industrial lot sizing problems: a review. Int J Prod Res 46(6):1619–1643. doi:10.1080/00207540600902262

    Article  Google Scholar 

  • Karimi B, Ghomia SF, Wilson J (2003) The capacitated lot sizing problem: a review of models and algorithms. Omega 31(5):365–378. doi:10.1016/S0305-0483(03)00059-8. http://linkinghub.elsevier.com/retrieve/pii/S0305048303000598

    Google Scholar 

  • Kempkes J, Koberstein A (2010) A resource based mixed integer modelling approach for integrated operational logistics planning. Adv Manuf Sustain Logist 46(4):281–294. doi:10.1007/978-3-642-12494-5_26. http://www.springerlink.com/index/x417k4668p344377.pdf

  • Kempkes JP (2009) Kostenoptimale Materialflüsse in der operativen Zulieferungslogistik der Nutzfahrzeugindustrie. Ph.D. thesis, University of Paderbon

  • Meyr H (2004) Supply chain planning in the German automotive industry. OR Spectr 26(4):447–470. 10.1007/s00291-004-0168-4

    Google Scholar 

  • Minner S (2003) Multiple-supplier inventory models in supply chain management: A review. Int J Prod Econ 81–82: 265–279 (Proceedings of the Eleventh International Symposium on Inventories). doi:10.1016/S0925-5273(02)00288-8. http://linkinghub.elsevier.com/retrieve/pii/S0925527302002888

  • Moin N, Salhi S (2007) Inventory routing problems: a logistical overview. J Oper Res Soc 58(2):1185–1194

    Article  Google Scholar 

  • Mutlu F, Cetinkaya S, Bookbinder J (2010) An analytical model for computing the optimal time-and-quantity-based policy for consolidated shipments. IIE Trans 42:367–377

    Article  Google Scholar 

  • Reith-Ahlemeier G (2002) Ressourcenorientierter Bestellmengenplanung und Lieferantenauswahl: Modelle und Algorithmen f\(\backslash \backslash \)”ur Supply Chain Optimierung und E-Commerce. Books on Demand. http://books.google.de/books?id=ApN83pwYh-IC

  • Robinson P, Narayanan a, Sahin F (2009) Coordinated deterministic dynamic demand lot-sizing problem: a review of models and algorithms. Omega 37(1):3–15. doi:10.1016/j.omega.2006.11.004. http://linkinghub.elsevier.com/retrieve/pii/S0305048306001496

  • Schöneberg T, Koberstein A, Suhl L (2011) An optimization model for automated selection of economic and ecologic delivery profiles in area forwarding based inbound logistics networks. Flex Serv Manuf J 22(3–4):214–235. doi:10.1007/s10696-011-9084-5. http://www.springerlink.com/index/10.1007/s10696-011-9084-5

  • Schöneberg T, Koberstein A, Suhl L (2011) Impact of delivery profiles on the stability of delivery profiles. In: Proceedings of the 21st International Conference on Production Research

  • Silver E (1978) Inventory control under a probabilistic time-varying demand pattern. AIIE Trans 10(4):371–379

    Article  Google Scholar 

  • Silver EA (1979) A simple inventory replenishment decision rule for a linear trend in demand. J Oper Res Soc 30(1):71–75

    Google Scholar 

  • Speranza M, Ukovich W (1994) Minimizing transportation and inventory costs for several products on a single link. Oper Res 42(5):879–894

    Article  Google Scholar 

  • Stadtler H (2006) A general quantity discount and supplier selection mixed integer programming model. OR Spectr 29(4):723–744. doi:10.1007/s00291-006-0066-z. http://www.springerlink.com/index/10.1007/s00291-006-0066-z

    Google Scholar 

  • Tarim SA, Kingsman BG (2004) The stochastic dynamic production/inventory lot-sizing problem with service-level constraints. Int J Prod Econ 88(1):105–119. doi:10.1016/S0925-5273(03)00182-8. http://linkinghub.elsevier.com/retrieve/pii/S0925527303001828

  • Tempelmeier H (2002) A simple heuristic for dynamic order sizing and supplier selection with time-varying data. Order A J Theory Ordered Sets Appl 11(4):499–515

    Google Scholar 

  • Tempelmeier H (2007) On the stochastic uncapacitated dynamic single-item lotsizing problem with service level constraints. Eur J Oper Res 181(1):184–194. doi:10.1016/j.ejor.2006.06.009. http://linkinghub.elsevier.com/retrieve/pii/S0377221706004206

    Google Scholar 

  • Viswanathan S (2001) Coordinating supply chain inventories through common replenishment epochs. Eur J Oper Res 129:277–286

    Article  Google Scholar 

  • Wagner HM, Whitin TM (1958) Dynamic version of the economic lot size model. Manag Sci 5(1):89–96

    Article  Google Scholar 

  • Xu J, Lu LL, Glover F (2000) The deterministic multi-item dynamic lot size problem with joint business volume discount. Ann Oper Res 96(1–4):317–337

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Koberstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schöneberg, T., Koberstein, A. & Suhl, L. A stochastic programming approach to determine robust delivery profiles in area forwarding inbound logistics networks. OR Spectrum 35, 807–834 (2013). https://doi.org/10.1007/s00291-013-0349-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00291-013-0349-0

Keywords

Navigation