Skip to main content
Log in

Equilibrium consumption and portfolio decisions with stochastic discount rate and time-varying utility functions

  • Regular Article
  • Published:
OR Spectrum Aims and scope Submit manuscript

Abstract

This paper studies a multi-period investment–consumption optimization problem with a stochastic discount rate and a time-varying utility function, which are governed by a Markov-modulated regime switching model. The investment is dynamically reallocated between one risk-free asset and one risky asset. The problem is time inconsistent due to the stochastic discount rate. An analytical equilibrium solution is established by resorting to a game theoretical framework. Numerous sensitivity analyses and numerical examples are provided to demonstrate the effects of the stochastic discount rate and time-varying utility coefficients on the decision-maker’s investment–consumption behavior. Our results show that many properties which are satisfied in the classical models do not hold any more due to either the stochastic discount rate or the time-varying utility function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. A dynamic optimization problem is called a time-inconsistent problem if the Bellman’s optimality principle does not hold (see Björk and Murgoci 2014; Björk et al. 2014). Otherwise, it is a time-consistent problem.

  2. For a dynamic optimization problem, if the optimal strategy \(\pi (n)=\left( \pi _n,\pi _{n+1},\ldots ,\pi _{T-1}\right) \) at time \(n(n=0,1,\ldots ,T-1)\) is consistent with the optimal strategy \(\pi (k)\) determined at any time \(k>n\), then it is called a time-consistent strategy. Otherwise, if there exists some \(k>n\) such that the truncated part of \(\pi (n)\), i.e., \(\left( \pi _{k},\pi _{k+1},\ldots ,\pi _{T-1}\right) \) is not equal to \(\pi (k)\), then the strategy is called a time-inconsistent strategy. When the strategy is time inconsistent, the strategy \(\pi (n)\) previously decided at time n will not be implemented at time \(k>n\) unless some commitment mechanism exists or the decision-maker is self control (Hsiaw 2013).

References

  • Ainslie GW (1992) Picoeconomics. Cambridge University Press, Cambridge

    Google Scholar 

  • Barro RJ (1999) Ramsey meets Laibson in the neoclasical growth model. Q J Econ 114:1125–1152

    Article  Google Scholar 

  • Björk T, Murgoci A (2014) A theory of Markovian time-inconsistent stochastic control in discrete time. Finance Stoch 18:545–592

    Article  Google Scholar 

  • Björk T, Murgoci A, Zhou XY (2014) Mean variance portfolio optimization with state dependent risk aversion. Math Finance 24:1–24

    Article  Google Scholar 

  • Campbell JY, Viceira LM (2001) Strategic asset allocation: portfolio choice for long-term investors. Oxford University Press, New York

    Google Scholar 

  • Çanakoğlu E, Özekici S (2009) Portfolio selection in stochastic markets with exponential utility functions. Ann Oper Res 166:281–297

    Article  Google Scholar 

  • Çanakoğlu E, Özekici S (2010) Portfolio selection with stochastic markets with HARA utility functions. Eur J Oper Res 201:520–536

    Article  Google Scholar 

  • Çanakoğlu E, Özekici S (2012) HARA frontiers of optimal portfolios in stochastic markets. Eur J Oper Res 221:129–137

    Article  Google Scholar 

  • Chen ZP (2005) Multiperiod consumption and portfolio decisions under the multivariate GARCH model with transaction costs and CVaR-based risk control. OR Spectr 27:603–632

    Article  Google Scholar 

  • Cheung KC, Yang HL (2004) Asset allocation with regime-switching: discrete-time case. ASTIN Bull 34:247–257

    Article  Google Scholar 

  • Cheung KC, Yang HL (2007) Optimal investment–consumption strategy in discrete-time model with regime switching. Discrete Contin Dyn Syst 8:315–332

    Article  Google Scholar 

  • Cocco JF, Gomes FJ, Maenhout PJ (2005) Consumption and portfolio choice over the life cycle. Rev Financ Stud 18:491–533

    Article  Google Scholar 

  • Ekeland I, Lazrak A (2006) Being serious about non-commitment: subgame perfect equilibrium in continuous time. Working paper. http://arxiv.org/abs/math/0604264

  • Ekeland I, Pirvu TA (2008) Investment and consumption without commitment. Math Financ Econ 2:57–86

    Article  Google Scholar 

  • Ekeland I, Mbodji O, Pirvu TA (2012) Time-consistent portfolio management. SIAM J Financ Math 3:1–32

    Article  Google Scholar 

  • Frederick S, Loewenstein G, O’Donoghue T (2002) Time discounting and time preference: a critical review. J Econ Lit 40:351–401

    Article  Google Scholar 

  • Goldman SM (1980) Consistent plans. Rev Econ Stud 47:533–537

    Article  Google Scholar 

  • Grenadier SR, Wang N (2007) Investment under uncertainty and time-inconsistent preferences. J Financ Econ 84(1):2–39

    Article  Google Scholar 

  • Hamilton JD (1989) A new approach to the economic analysis of non-stationary time series. Econometrica 57:357–384

    Article  Google Scholar 

  • Harris C, Laibson D (2013) Instantaneous gratification. Q J Econ 128(1):205–248

    Article  Google Scholar 

  • Harrison GW, Lau MI, Williams MB (2002) Estimating individual discount rates in Denmark: a field experiment. Am Econ Rev 92:1606–1617

    Article  Google Scholar 

  • Hsiaw A (2013) Goal-setting and self-control. J Econ Theory 148(2):601–626

    Article  Google Scholar 

  • Karatzas I, Shreve SE (1998) Methods of mathematical finance. Springer, New York

    Book  Google Scholar 

  • Kronborg MT, Steffensen M (2015) Inconsistent investment and consumption problems. Appl Math Optim 71:473–515

    Article  Google Scholar 

  • Kryger EM, Steffensen M (2010) Some solvable portfolio problems with quadratic and collective objectives. Working paper. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1577265

  • Li ZF, Tan KS, Yang HL (2008) Multiperiod optimal investment–consumption strategies with mortality risk and environment uncertainty. North Am Actuar J 12:47–64

    Article  Google Scholar 

  • Loewenstein G, Prelec D (1992) Anomalies in intertemporal choice: evidence and an interpretation. Q J Econ 107:573–597

    Article  Google Scholar 

  • Marín-Solano J, Navas J (2009) Non-constant discounting in finite horizon: the free terminal time case. J Econ Dyn Control 33:666–675

    Article  Google Scholar 

  • Marín-Solano J, Navas J (2010) Consumption and portfolio rules for time-inconsistent investors. Eur J Oper Res 201:860–872

    Article  Google Scholar 

  • Merton RC (1969) Lifetime portfolio selection under uncertainty: the continuous-time case. Rev Econ Stat 51:247–257

    Article  Google Scholar 

  • Merton RC (1971) Optimal consumption and portfolio rules in a continuous-time model. J Econ Theory 3:373–413

    Article  Google Scholar 

  • Pirvu TA, Zhang HY (2014) Investment–consumption with regime-switching discount rates. Math Soc Sci 71:142–150

    Article  Google Scholar 

  • Pollak RA (1968) Consistent planning. Rev Econ Stud 35:201–208

    Article  Google Scholar 

  • Read D, Read NL (2004) Time discounting over the lifespan. Organ Behav Hum Decis Process 94:22–32

    Article  Google Scholar 

  • Richard S (1975) Optimal consumption, portfolio and life insurance rules for an uncertain lived individual in a continuous time model. J Financ Econ 2:187–203

    Article  Google Scholar 

  • Samuelson PA (1969) Lifetime portfolio selection by dynamic stochastic programming. Rev Econ Stat 51:239–246

    Article  Google Scholar 

  • Strotz RH (1956) Myopia and inconsistency in dynamic utility maximization. Rev Econ Stud 23:165–180

    Article  Google Scholar 

  • Thaler R (1981) Some empirical evidence on dynamic inconsistency. Econ Lett 8:201–207

    Article  Google Scholar 

  • Wang J, Forsyth PA (2011) Continuous time mean-variance asset allocation: a time-consistent strategy. Eur J Oper Res 209:184–201

    Article  Google Scholar 

  • Wei J, Wong KC, Yam SCP, Yung SP (2013) Markowitz’s mean-variance asset-liability management with regime switching: a time-consistent approach. Insurance Math Econ 53:281–291

    Article  Google Scholar 

  • Weng C (2013) Constant proportion portfolio insurance under regime switching exponential Lévy process. Insurance Math Econ 52(3):508–521

    Article  Google Scholar 

  • Weng C (2014) Discrete-time CPPI under transaction cost and regime switching. Working paper. http://ssrn.com/abstract=2432233

  • Wu HL, Li ZF (2012) Multi-period mean-variance portfolio selection with regime switching and a stochastic cash flow. Insurance Math Econ 50:371–384

    Article  Google Scholar 

  • Zeng Y, Li ZF (2011) Optimal time-consistent investment and reinsurance policies for mean-variance insurers. Insurance Math Econ 49:145–154

    Article  Google Scholar 

  • Zou Z, Chen S, Wedge L (2014) Finite horizon consumption and portfolio decisions with stochastic hyperbolic discounting. J Math Econ 52:70–80

    Article  Google Scholar 

Download references

Acknowledgements

Wu acknowledges the funding support from the National Natural Science Foundation of China (Nos. 11301562, 11671411), the 111 Project (No. B17050) and the Program for Innovation Research in Central University of Finance and Economics. Weng thanks funding support from the Natural Sciences and Engineering Research Council of Canada (RGPIN-2016-04001), the Society of Actuaries Centers of Actuarial Excellence Research Grant, the National Natural Science Foundation of China (No. 71671104) Zeng acknowledges the funding support from the National Natural Science Foundation of China (Nos. 71571195, 71771220, 71721001), Fok Ying Tung Education Foundation for Young Teachers in the Higher Education Institutions of China (No. 151081), Guangdong Natural Science Funds for Distinguished Young Scholar (No. 2015A030306040) and Guangdong Natural Science for Research Team (2014A030312003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zeng.

Appendices

The proof of Lemma 3.2

Proof

We only give the proof of (16) for \(\gamma <0\), as (15) can be proved in a similar way. When \(\gamma <0\),

$$\begin{aligned}\mathop {\sup }\limits _{0 \le c \le w,\alpha } \left\{ \frac{c^\gamma }{\gamma } + \frac{(w - c)^\gamma }{\gamma } f(\alpha ) \right\} = \frac{1}{\gamma }\mathop {\inf }\limits _{0 \le c \le w,\alpha } \left\{ {c^\gamma } + {(w - c)^\gamma }f(\alpha )\right\} . \end{aligned}$$

Consider the following maximization problem:

$$\begin{aligned}\mathop {\inf }\limits _{0 \le c \le w} \left\{ {c^\gamma } + {(w - c)^\gamma }H\right\} ,\end{aligned}$$

where H is a positive constant. Since

$$\begin{aligned} \frac{d^2}{d{c^2}}\left[ {c^\gamma } + {(w - c)^\gamma }H\right] =\gamma (\gamma -1)\left( c^{\gamma -2}+(w-c)^{\gamma -2}H\right) >0, \end{aligned}$$

the minimal value of \({c^\gamma } + {(w - c)^\gamma }H\) is achieved at

$$\begin{aligned} {\hat{c}}=\frac{w}{1+H^{\frac{1}{1-\gamma }}}. \end{aligned}$$
(A.1)

As a consequence,

$$\begin{aligned}&\mathop {\sup }\limits _{0 \le c \le w } \left\{ \frac{c^\gamma }{\gamma } + \frac{(w - c)^\gamma }{\gamma }H \right\} \nonumber \\&\quad =\frac{1}{\gamma }\mathop {\inf }\limits _{0 \le c \le w} \left\{ {c^\gamma } + {(w - c)^\gamma }H \right\} \nonumber \\&\quad =\frac{1}{\gamma }w^{\gamma }\left[ 1+H^{1/(1-\gamma )}\right] ^{1-\gamma }, \end{aligned}$$
(A.2)

which is a decreasing function of H, and thus we have (16).

Proof of Theorem 3.1

Proof

The proof will be shown only for \(0<\gamma <1\), as the results for \(\gamma <0\) can be proved in a parallel way. Throughout the proof, we always keep the constraints \(0\le c_n \le w_n\) and \(0\le \alpha _n \le 1\) for all \(n=0,1,\ldots ,T-1\). The proof will be achieved by an induction argument. To proceed, let

$$\begin{aligned} \begin{aligned} \varpi _n(i)&=\left( \frac{(A_n(i))^{\frac{1}{1-\gamma }}}{1+(A_n(i))^{\frac{1}{1-\gamma }}}\right) ^\gamma ,\\ \zeta _n(\alpha , i)&=\left[ (1-\alpha )r_f(i)+\alpha R_n(i)\right] ^\gamma ,~~i=1,2,\ldots ,L,~n=0,1,\ldots , T-1. \end{aligned}\end{aligned}$$

Then, according to Lemma 3.1, there exists a unique solution \({\hat{\alpha }}(i)\) such that

$$\begin{aligned} {\hat{\alpha }}(i)=\arg \max _{\alpha \in [0,1]} \mathrm{E}\left[ \zeta _n(\alpha , i)\right] , \end{aligned}$$

and according to (17), \(Y(i)=\mathrm{E}\left[ \zeta _n(\hat{\alpha }(i), i)\right] \). It should be noted that both \(\hat{\alpha }(i)\) and Y(i) depend on the market regime i only and are independent of time n. When \(n=T-1\), it follows from (13) and (21) that

$$\begin{aligned} V_{T-1}(i,w_{T-1})= & {} \mathop {\sup }\limits _{{\pi _{T - 1}}} {\mathrm{E}_{T - 1,i,{w_{T - 1}}}}\left[ \begin{aligned}&\frac{{{\vartheta _{T - 1}}(i){{\left( {{c_{T - 1}}} \right) }^\gamma }}}{\gamma } + \frac{{{\vartheta _T}({\xi _T}){{\left( {W_T^{{\pi _{T - 1}}}} \right) }^\gamma }/\gamma }}{{1 + \rho (T -1,i)}} \end{aligned}\right] \nonumber \\= & {} \mathop {\sup }\limits _{{c_{T - 1}},{\alpha _{T - 1}}} \left[ \begin{aligned}&\frac{{{\vartheta _{T - 1}}(i){{\left( {{c_{T - 1}}} \right) }^\gamma }}}{\gamma }\\&+ {H_{T - 1}}(i)\frac{{{{({w_{T - 1}} - {c_{T - 1}})}^\gamma }}}{\gamma }\mathrm{E}\left[ \zeta _{T-1}(\alpha _{T-1}, i)\right] \end{aligned} \right] ,\nonumber \\ \end{aligned}$$
(B.1)

where, obviously, \(\mathrm{E}\left[ \zeta _{T-1}(\alpha _{T-1}, i)\right] >0\). Consequently, applying Lemmas 3.1 and 3.2 to (B.1), we obtain

$$\begin{aligned} V_{T-1}(i,w_{T-1})= & {} \mathop {\sup }\limits _{{c_{T - 1}}} \left[ \frac{{{\vartheta _{T - 1}}(i){{\left( {{c_{T - 1}}} \right) }^\gamma }}}{\gamma } \right. \\&\left. \quad + {H_{T - 1}}(i)Y(i)\frac{{{{({w_{T - 1}} - {c_{T - 1}})}^\gamma }}}{\gamma } \right] \end{aligned}$$

and

$$\begin{aligned} {\hat{c}}_{T - 1} (i,w_{T - 1} ) =\frac{{{w_{T - 1}}}}{{1 + {{\left( {\frac{{Y(i){H_{T - 1}}(i)}}{{{\vartheta _{T - 1}}(i)}}} \right) }^{\frac{1}{{1 - \gamma }}}}}}= \frac{{w_{T - 1} }}{{1+\left( {A_{T -1} (i)} \right) ^{\frac{1}{{1 - \gamma }}}}}. \end{aligned}$$

Substituting \({\hat{c}}_{T-1}(i,w_{T - 1} )\) into \(V_{T-1}\) yields

$$\begin{aligned} V_{T-1}(i,w_{T-1})= \frac{(w_{T - 1})^\gamma }{\gamma }\vartheta _{T - 1}(i){{\left( {1 + {{\left( {{A_{T - 1}}(i)} \right) }^{\frac{1}{{1 - \gamma }}}}} \right) }^{1 - \gamma }}. \end{aligned}$$

This implies that (22)–(24) hold for \(n=T-1\). Generally, we assume that (22)–(24) hold for \(T-1,T-2,\ldots ,n+1\), and we shall prove that they hold for n as well. From the given assumptions, we obtain

$$\begin{aligned} W_k^{{\pi _n},{{{\hat{\pi }} }_{n + 1}},\ldots ,{{{\hat{\pi }} }_{k - 1}}} = W_{n + 1}^{{\pi _n}}\prod \limits _{m = n + 1}^{k - 1} {\frac{{{{\left( {{A_m}({\xi _m})} \right) }^{\frac{1}{{1 - \gamma }}}}}}{{1 + {{\left( {{A_m}({\xi _m})} \right) }^{\frac{1}{{1 - \gamma }}}}}}\left( {(1 - {{{\hat{\alpha }} }_m}){r_f}({\xi _m}) + {{{\hat{\alpha }} }_m}{R_m}({\xi _m})} \right) } \end{aligned}$$

for \(k=T-1,T-2,\ldots ,n+1\). This recursive equation implies

$$\begin{aligned} \frac{\left( W_k^{{\pi _n},{{{\hat{\pi }} }_{n + 1}},\ldots ,{{{\hat{\pi }} }_{k-1}}}\right) ^{\gamma }}{\gamma }=\frac{\left( W_{n+1}^{\pi _n}\right) ^\gamma }{\gamma }\prod \limits _{m=n+1}^{k-1}\left( \varpi _m(\xi _m) \zeta _m({\hat{\alpha }}_m,\xi _m)\right) , \end{aligned}$$
(B.2)

which along with (23) implies

$$\begin{aligned} \mathrm{E}_{n, i, w_n} [U_k({\hat{c}}_k )]= & {} \mathrm{E}_{n, i, w_n} \left[ {\frac{{\left( {W_k^{( \pi _n,{\hat{\pi }}_{n+1},\ldots ,{\hat{\pi }} _{k - 1} ) } } \right) ^\gamma }}{\gamma }\frac{\vartheta _k(\xi _k)}{{\left( {\left( {A_k (\xi _k )}\right) ^{\frac{1}{{1 -\gamma }}} + 1} \right) ^\gamma }}} \right] \nonumber \\= & {} \mathrm{E}_{n, i,w_n}\left[ \frac{\left( W_{n+1}^{\pi _n}\right) ^\gamma }{\gamma }\frac{\vartheta _k(\xi _k)\prod \limits _{m=n+1}^{k-1}\left( \varpi _m(\xi _m) \zeta _m({\hat{\alpha }}_m,\xi _m)\right) }{\left( {\left( {A_k (\xi _k )}\right) ^{\frac{1}{{1-\gamma }}} + 1} \right) ^\gamma }\right] .\qquad \quad \end{aligned}$$
(B.3)

From (1), it is clear that \(W_{n+1}^{\pi _n}\) depends on the random return \(R_n(i)\) at time n. Moreover, the term \(\prod \nolimits _{m=n+1}^{k-1}{\zeta _m({\hat{\alpha }}_m,\xi _m)}\) depends on the random return \(R_{n+1}(\xi _{n+1}),\ldots ,R_{k-1}(\xi _{k-1})\), and \(\varpi _k(\xi _k) \vartheta _k(\xi _k)\) and \(A_k(\xi _k)\) are relevant to \(\xi _k\). These variables are not independent of each other at time n because the market states \(\xi _{n+1},\ldots ,\xi _k\) are interdependent. However, we recall that \(\left\{ R_0(\cdot ),R_1(\cdot ),\ldots ,R_{T-1}(\cdot )\right\} \) are conditionally independent given the market states; hence, \(W_{n+1}^{\pi _n}\), \(\zeta _{n+1}({\hat{\alpha }}_{n+1},\xi _{n+1}),\ldots ,\zeta _{k-1}({\hat{\alpha }}_{k-1},\xi _{k-1})\) are independent for given values of \(\xi _n,\xi _{n+1},\ldots ,\xi _{k-1}\). Moreover, by definition we conclude that \(\prod \nolimits _{m=n+1}^{k-1}\varpi _{m}(\xi _m)\), \(\vartheta _k(\xi _k)\) and \(A_k(\xi _k)\) are all constant for given values of \(\xi _{n+1},\ldots ,\xi _k\). Consequently, an application of the tower property of the expectation operator yields

$$\begin{aligned}&\mathrm{E}_{n, i, w_n} [U_k({\hat{c}}_k )]\\&\quad =\mathrm{E}_{n, i, w_n} \left[ \mathrm{E}_{\xi _n,\xi _{n+1},\ldots ,\xi _{k}}\left[ \frac{\left( W_{n+1}^{\pi _n}\right) ^\gamma }{\gamma }\frac{\vartheta _k(\xi _k)\prod \limits _{m=n+1}^{k-1}\left( \varpi _m(\xi _m) \zeta _m({\hat{\alpha }}_m,\xi _m)\right) }{\left( {\left( {A_k (\xi _k )}\right) ^{\frac{1}{{1-\gamma }}} + 1} \right) ^\gamma }\right] \right] , \end{aligned}$$

where

$$\begin{aligned} \begin{aligned}&\mathrm{E}_{\xi _n,\xi _{n+1},\ldots ,\xi _{k}}\left[ \frac{\left( W_{n+1}^{\pi _n}\right) ^\gamma }{\gamma }\frac{\vartheta _k(\xi _k)\prod \limits _{m=n+1}^{k-1}\left( \varpi _m(\xi _m) \zeta _m({\hat{\alpha }}_m,\xi _m)\right) }{\left( {\left( {A_k (\xi _k )}\right) ^{\frac{1}{{1-\gamma }}} + 1} \right) ^\gamma }\right] \\&\quad =\frac{\vartheta _k(\xi _k)}{\gamma \left( {\left( {A_k (\xi _k )}\right) ^{\frac{1}{{1-\gamma }}} + 1} \right) ^\gamma }\mathrm{E}_{\xi _n,\xi _{n+1},\ldots ,\xi _{k}}\left[ (W_{n+1}^{\pi _n})^\gamma \right] \\&\quad \quad \prod \limits _{m=n+1}^{k-1}{\varpi _m(\xi _m) \mathrm{E}_{\xi _n,\xi _{n+1},\ldots ,\xi _{k}}\left( \zeta _m({\hat{\alpha }}_m,\xi _m)\right) }\\&\qquad = \frac{\vartheta _k(\xi _k)}{\gamma \left( {\left( {A_k (\xi _k )}\right) ^{\frac{1}{{1-\gamma }}} + 1} \right) ^\gamma }\mathrm{E}_{\xi _n,\xi _{n+1},\ldots ,\xi _{k}}\left[ (W_{n+1}^{\pi _n})^\gamma \right] \prod \limits _{m=n+1}^{k-1}{\varpi _m(\xi _m) Y(\xi _m)}\\&\qquad =\mathrm{E}_{\xi _n,\xi _{n+1},\ldots ,\xi _{k}}\left[ \frac{\left( W_{n+1}^{\pi _n}\right) ^\gamma }{\gamma }\frac{\vartheta _k(\xi _k)\prod \limits _{m=n+1}^{k-1}\varpi _m(\xi _m) Y(\xi _m)}{\left( {\left( {A_k (\xi _k )}\right) ^{\frac{1}{{1-\gamma }}} + 1} \right) ^\gamma }\right] . \end{aligned}\end{aligned}$$

Therefore, we have

$$\begin{aligned}&\mathrm{E}_{n, i, w_n} [U_k({\hat{c}}_k )]\nonumber \\&\quad =\mathrm{E}_{n,i,w_n}\left[ \mathrm{E}_{\xi _n,\xi _{n+1},\ldots ,\xi _{k}}\left[ \frac{\left( W_{n+1}^{\pi _n}\right) ^\gamma }{\gamma }\frac{\vartheta _k(\xi _k)\prod \limits _{m=n+1}^{k-1}\varpi _m(\xi _m) Y(\xi _m)}{\left( {\left( {A_k (\xi _k )}\right) ^{\frac{1}{{1-\gamma }}} + 1} \right) ^\gamma }\right] \right] \nonumber \\&\quad =\mathrm{E}_{n, i, w_n} \left[ \frac{\left( W_{n+1}^{\pi _n}\right) ^\gamma }{\gamma }\frac{\vartheta _k(\xi _k)\prod \limits _{m=n+1}^{k-1}{\varpi _m(\xi _m) Y(\xi _m)}}{\left( {\left( {A_k (\xi _k )}\right) ^{\frac{1}{{1-\gamma }}} + 1} \right) ^\gamma }\right] . \end{aligned}$$
(B.4)

Substituting (B.2) and (B.4) into (13) implies

$$\begin{aligned} \begin{aligned} V_n(i,w_n):=&\mathop {\max }\limits _{c_n ,\alpha _n }\left[ {U_n}\left( c_n\right) +I_1({n, i, w_n})-I_2({n, i, w_n})+\frac{{{{(W_{n + 1}^{{\pi _n}})}^\gamma }}}{\gamma }{H_n}(i)\right] , \end{aligned}\nonumber \\ \end{aligned}$$
(B.5)

where

$$\begin{aligned} I_1({n, i, w_n}) =\mathrm{E}_{n,i,w_n}\left[ \begin{aligned}&\frac{{{{(W_{n + 1}^{{\pi _n}})}^\gamma }}}{\gamma }\frac{{{{\left( {1 + \rho (n + 1,{\xi _{n + 1}})} \right) }^{T - n - 1}}}}{{{{\left( {1 + \rho (n,i)} \right) }^{T - n}}}}{\vartheta _{n + 1}({\xi _{n + 1}})}\\&\times \left( {1 + {{\left( {{A_{n + 1}}({\xi _{n + 1}})} \right) }^{\frac{1}{{1 - \gamma }}}}} \right) ^{1 - \gamma } \end{aligned}\right] , \end{aligned}$$

and

$$\begin{aligned}&I_2(n, i, w_n) \\&\quad =\mathrm{E}_{n,i,w_n}\left[ \frac{{{{(W_{n + 1}^{{\pi _n}})}^\gamma }}}{\gamma }\sum \limits _{k = n + 1}^T {\left( \begin{aligned}&\frac{{{{\left( {1 + \rho (n + 1,{\xi _{n + 1}})} \right) }^{T - k}}}}{{\left( {1 + \rho (n,i)} \right) }^{T - n}}\\&\quad \times \frac{\vartheta _k(\xi _k)}{\left( {1 + {\left( {{A_k}({\xi _k})} \right) }^{\frac{1}{{1 - \gamma }}}}\right) ^\gamma } \prod \limits _{m = n + 1}^{k - 1} {\varpi _m(\xi _m)Y({\xi _m})} \end{aligned}\right) }\right] . \end{aligned}$$

According to the expressions of \(I_1(n,i,w_n)\) and \(I_2(n,i,w_n)\), we have

$$\begin{aligned}&I_1(n,i,w_n)-I_2(n,i,w_n) \\&\quad = \mathrm{E}_{n,i,w_n}\left[ \begin{aligned}&\frac{{{{(W_{n + 1}^{{\pi _n}})}^\gamma }}}{\gamma }\frac{{{{\left( {1 + \rho (n + 1,{\xi _{n + 1}})} \right) }^{T - n - 1}}}}{{{{\left( {1 + \rho (n,i)} \right) }^{T - n}}}}{\vartheta _{n + 1}({\xi _{n + 1}})}\left( {1 + {{\left( {{A_{n + 1}}({\xi _{n + 1}})} \right) }^{\frac{1}{{1 - \gamma }}}}} \right) ^{1 - \gamma } \end{aligned}\right] \\&\qquad -\,\mathrm{E}_{n,i,w_n}\left[ \frac{{{{(W_{n + 1}^{{\pi _n}})}^\gamma }}}{\gamma }\sum \limits _{{k = n + 1}}^T {\left( \begin{aligned}&\frac{{{{\left( {1 + \rho (n + 1,{\xi _{n + 1}})} \right) }^{T - k}}}}{{\left( {1 + \rho (n,i)} \right) }^{T - n}}\\&\times \frac{\vartheta _k(\xi _k)}{\left( {1 + {\left( {{A_k}({\xi _k})} \right) }^{\frac{1}{{1 - \gamma }}}}\right) ^\gamma } \prod \limits _{m = n + 1}^{k - 1} {{\varpi _m(\xi _m)}Y({\xi _m})} \end{aligned}\right) }\right] \\&\quad =\mathrm{E}_{n,i,w_n}\left[ \begin{aligned}&\frac{{{{(W_{n + 1}^{{\pi _n}})}^\gamma }}}{\gamma }\frac{{{{\left( {1 + \rho (n + 1,{\xi _{n + 1}})} \right) }^{T - n - 1}}}}{{{{\left( {1 + \rho (n,i)} \right) }^{T - n}}}}{\vartheta _{n + 1}({\xi _{n + 1}})}\\&\times \left[ \left( {1 + {{\left( {{A_{n + 1}}({\xi _{n + 1}})} \right) }^{\frac{1}{{1 - \gamma }}}}} \right) ^{1 - \gamma }-\left( {1 + {{\left( {{A_{n + 1}}({\xi _{n + 1}})} \right) }^{\frac{1}{{1 - \gamma }}}}} \right) ^{ - \gamma }\right] \end{aligned}\right] \\&\qquad -\,\mathrm{E}_{n,i,w_n}\left[ \frac{{{{(W_{n + 1}^{{\pi _n}})}^\gamma }}}{\gamma }\sum \limits _{{k = n + 2}}^T {\left( \begin{aligned}&\frac{{{{\left( {1 + \rho (n + 1,{\xi _{n + 1}})} \right) }^{T - k}}}}{{\left( {1 + \rho (n,i)} \right) }^{T - n}}\\&\times \frac{\vartheta _k(\xi _k)}{\left( {1 + {\left( {{A_k}({\xi _k})} \right) }^{\frac{1}{{1 - \gamma }}}}\right) ^\gamma } \prod \limits _{m = n + 1}^{k - 1} {\varpi _m(\xi _m)Y({\xi _m})} \end{aligned}\right) }\right] \\&\quad =\mathrm{E}_{n,i,w_n}\left[ \begin{aligned}&\frac{{{{(W_{n + 1}^{{\pi _n}})}^\gamma }}}{\gamma }\frac{{{{\left( {1 + \rho (n + 1,{\xi _{n + 1}})} \right) }^{T - n - 1}}}}{{{{\left( {1 + \rho (n,i)} \right) }^{T - n}}}}{\vartheta _{n + 1}}({\xi _{n + 1}})\frac{{{{\left( {{A_{n + 1}}({\xi _{n + 1}})} \right) }^{\frac{1}{{1 - \gamma }}}}}}{{{{\left( {1 + {{\left( {{A_{n + 1}}({\xi _{n + 1}})} \right) }^{\frac{1}{{1 - \gamma }}}}} \right) }^\gamma }}}\end{aligned}\right] \nonumber \\&\qquad -\,\mathrm{E}_{n,i,w_n}\left[ \frac{{{{(W_{n + 1}^{{\pi _n}})}^\gamma }}}{\gamma }\sum \limits _{{k = n +2}}^T {\left( \begin{aligned}&\frac{{{{\left( {1 + \rho (n + 1,{\xi _{n + 1}})} \right) }^{T - k}}}}{{\left( {1 + \rho (n,i)} \right) }^{T - n}}\\&\times \frac{{\vartheta _k}({\xi _k})}{\left( {1 + {\left( {{A_k}({\xi _k})} \right) }^{\frac{1}{{1 - \gamma }}}}\right) ^\gamma } \prod \limits _{m = n + 1}^{k - 1} {{\varpi _m(\xi _m)}Y({\xi _m})} \end{aligned}\right) }\right] \nonumber \\&\quad =:\bigtriangleup _1(n,i,w_n)-\bigtriangleup _2(n,i,w_n). \end{aligned}$$

In view of

$$\begin{aligned} A_k(\xi _k)=\frac{{H_k}(\xi _k)Y(\xi _k)}{\vartheta _k(\xi _k)}~~\mathrm{{and}}~~\varpi _k(\xi _k)=\left( \frac{(A_k(\xi _k))^{\frac{1}{1-\gamma }}}{1+(A_k(\xi _k))^{\frac{1}{1-\gamma }}}\right) ^\gamma , \end{aligned}$$

we first obtain

$$\begin{aligned} \bigtriangleup _1(n,i,w_n)= & {} \mathrm{E}_{n,i,w_n}\left[ \frac{{{{(W_{n + 1}^{{\pi _n}})}^\gamma }}}{\gamma }\frac{{{{\left( {1 + \rho (n + 1,{\xi _{n + 1}})} \right) }^{T - n - 1}}}}{{{{\left( {1 + \rho (n,i)} \right) }^{T - n}}}}\right. \\&\left. Y(\xi _{n + 1})\varpi _{n+1}(\xi _{n+1}){H_{n + 1}}({\xi _{n + 1}})\right] .\end{aligned}$$

Further referring to (21), we have

$$\begin{aligned}&\bigtriangleup _1(n,i,w_n)\\&\quad =\mathrm{E}_{n,i,w_n}\left[ \begin{aligned}&\frac{{{{(W_{n + 1}^{{\pi _n}})}^\gamma }}}{\gamma }\frac{{{{\left( {1 + \rho (n + 1,{\xi _{n + 1}})} \right) }^{T - n - 1}}}}{{{{\left( {1 + \rho (n,i)} \right) }^{T - n}}}}Y({\xi _{n + 1}})\varpi _{n+1}(\xi _{n+1})\\&\times \mathrm{E}_{n + 1,{\xi _{n + 1}}}\left[ \sum \limits _{k = n + 2}^T {\left( \begin{aligned}&\frac{1}{\left( {1 + \rho (n + 1,{\xi _{n + 1}})} \right) ^{k - n - 1}}\\&\times \frac{\vartheta _k(\xi _k)}{\left( {1 + {{\left( {{A_k}({\xi _k})} \right) }^{\frac{1}{{1 - \gamma }}}}} \right) ^\gamma }\prod \limits _{m = n + 2}^{k - 1} {\varpi _m(\xi _{m})Y(\xi _m)} \end{aligned}\right) } \right] \end{aligned}\right] \\&\quad =\mathrm{E}_{n,i,w_n}\left[ \frac{{{{(W_{n + 1}^{{\pi _n}})}^\gamma }}}{\gamma }\sum \limits _{k = n +2}^T {\left( \begin{aligned}&\frac{{{{\left( {1 + \rho (n + 1,{\xi _{n + 1}})} \right) }^{T - k}}}}{{\left( {1 + \rho (n,i)} \right) }^{T - n}}\\&\times \frac{\vartheta _k({\xi _k})}{\left( {1 + {\left( {{A_k}({\xi _k})} \right) }^{\frac{1}{{1 - \gamma }}}}\right) ^\gamma }\prod \limits _{m = n + 1}^{k - 1} {\varpi _m(\xi _{m})Y({\xi _m})} \end{aligned}\right) } \right] \\&\quad =\bigtriangleup _2(n,i,w_n), \end{aligned}$$

which leads to \(I_1(n,i,w_n)-I_2(n,i,w_n)=0\). Consequently, (B.5) is equivalent to

$$\begin{aligned} V_n(i,w_n)= & {} \mathop {\max }\limits _{c_n ,\alpha _n }\left[ {U_n}\left( {{c_n}} \right) +\frac{{{{(W_{n + 1}^{{\pi _n}})}^\gamma }}}{\gamma }{H_n}(i)\right] \nonumber \\= & {} \mathop {\max }\limits _{{c_n},{\alpha _n}} \left[ {{\vartheta _n}(i)\frac{{{{\left( {{c_n}} \right) }^\gamma }}}{\gamma } + \frac{{{{({w_n} - {c_n})}^\gamma }\mathrm{E}(\zeta _n(i))}}{\gamma }{H_n}(i)} \right] . \end{aligned}$$
(B.6)

Since \(\mathrm{E}(\zeta _n(i))H_n(i)>0\) and is a function of \(\alpha _n\), we can apply Lemma 3.2 to obtain

$$\begin{aligned} V_n(i,w_n)=\mathop {\sup }\limits _{{c_n}} \left[ {{\vartheta _n}(i)\frac{{{{\left( {{c_n}} \right) }^\gamma }}}{\gamma } + \frac{{{{({w_n} - {c_n})}^\gamma }Y(i)}}{\gamma }{H_n}(i)} \right] , \end{aligned}$$

where the supremum of the value function is attained at

$$\begin{aligned} {{\hat{c}}_n}\left( {i,{w_n}} \right) = \frac{{{w_n}}}{{1 + {{\left( {\frac{{Y(i){H_n}(i)}}{{{\vartheta _n}(i)}}} \right) }^{\frac{1}{{1 - \gamma }}}}}} = \frac{{{w_n}}}{{1 + {{\left( {{A_n}(i)} \right) }^{\frac{1}{{1 - \gamma }}}}}}.\end{aligned}$$

Substituting \({\hat{c}}_n(i,w_n)\) into \(V_n(i,w_n)\) and rearranging yield

$$\begin{aligned}V_n(i,w_n)=\frac{{{{\left( {{w_n}} \right) }^\gamma }}}{\gamma } {\vartheta _n}(i){{\left( {1 + {{\left( {{A_n}(i)} \right) }^{\frac{1}{{1 - \gamma }}}}} \right) }^{1 - \gamma }}.\end{aligned}$$

This implies that the desired results also hold for n, and thus, by induction principle, the proof is complete.

Proof of Proposition 4.1

Proof

It follows from (21) that \(H_n(i)\) does not depend on \(\vartheta _n(i)\), which along with (23) immediately yields that the equilibrium consumption proportion \({\hat{\phi }}_n(i)\) is strictly increasing in \(\vartheta _n(i)\). Further note that \({\hat{\eta }}_n(i)=(1-{\hat{\phi }}_n(i)){\hat{\alpha }}_n(i)\) and \({\hat{\alpha }}_n(i)\) is irrelevant to \(\vartheta _n(i)\). Thus, \({\hat{\eta }}_n(i)\) is strictly decreasing with \(\vartheta _n(i)\).

Proof of Proposition 4.2

Proof

When the discount rates are a constant, (21) can be written as

$$\begin{aligned} H_n(i)=\frac{1}{1+\rho }\mathrm{E}_{n,i}\left[ {\vartheta _{n + 1}}({\xi _{n + 1}}){{\left( {1 + {{\left( \frac{{{H_{n+ 1}}(\xi _{n + 1})Y(\xi _{n + 1})}}{{{\vartheta _{n+1}}(\xi _{n + 1})}} \right) }^{\frac{1}{{1 - \gamma }}}}} \right) }^{1 - \gamma }} \right] .\nonumber \\ \end{aligned}$$
(D.1)

By (18), \(H_T(\xi _T)=0\) and thus (D.1) implies

$$\begin{aligned} {H_{T - 1}}(i)= & {} {\mathrm{E}_{T - 1,i}}\left[ \frac{\vartheta _T(\xi _T)}{1 + \rho }\right] \\= & {} \frac{\sum \limits _{j=1}^L{Q(i,j)\vartheta _T(j)}}{1+\rho }, \end{aligned}$$

which is obviously increasing in \({\varvec{\vartheta }}_T\) for each \(i=1,\ldots , L\). Consequently, it follows from (20) and (27) that \({\hat{\phi }}_{T-1}(i)\) is decreasing in \({\varvec{\vartheta }}_T\) for each \(i=1,\ldots , L\).

For \(n=T-2\), (D.1) implies

$$\begin{aligned} H_{T-2}(i)=\frac{1}{1+\rho } \sum \limits _{j=1}^L{Q(i,j){\vartheta _{T- 1}}(j){{\left( {1 + {{\left( \frac{{{H_{T- 1}}(j)Y(j)}}{{{\vartheta _{T-1}}(j)}} \right) }^{\frac{1}{{1 - \gamma }}}}} \right) }^{1 - \gamma }}}. \end{aligned}$$
(D.2)

Thus, for each \(i=1,\ldots , L\), \(H_{T-2}(i)\) is also increasing in \({\varvec{\vartheta }}_T\) as a property inherited from \(H_{T-1}(i)\), and consequently, \({\hat{\phi }}_{T-2}(i)\) is decreasing in \({\varvec{\vartheta }}_T\) due to (20) and (27).

In general, we assume that \(H_{n+1}(i)\) is increasing in \({\varvec{\vartheta }}_T\) for each \(i=1,\ldots , L\), and from (D.1) we can obtain a similar equation for \(H_n(\cdot )\) in terms of \(H_{n+1}(\cdot )\) similar to (D.2) to conclude that \(H_n(i)\) is indeed increasing in \({\varvec{\vartheta }}_T\). Then, by (20) and (27), \({\hat{\phi }}_n(i)\) is decreasing in \({\varvec{\vartheta }}_T\), and therefore, by the induction principle, we complete the proof w.r.t. the monotonic property of \({\hat{\phi }}_n\) in the general case.

The results for \({\hat{\eta }}_n(i)\) follow straightforward from the equation \({\hat{\eta }}_n(i)=(1-{\hat{\phi }}_n(i)){\hat{\alpha }}_n(i)\) and the fact that \({\hat{\alpha }}_n(i)\) is irrelevant to \(\vartheta _n(i)\). The proof for results with all elements of Q being positive can be obtained in a complete parallel way.

Proof of Proposition 4.3

Proof

When the discount rates are constant, (21) can be equivalently written as Eq. (D.1), from which it follows for \(k=n, \ldots , T-1\) that

$$\begin{aligned} H_k(i)=\frac{1}{1+\rho }\sum _{j=1}^LQ(i,j) \vartheta _{k + 1}(j)\left( 1 + {{\left( \frac{{{H_{k+ 1}}(j)Y(j)}}{{{\vartheta _{k+1}}(j)}} \right) }^{\frac{1}{{1 - \gamma }}}} \right) ^{1 - \gamma }, \end{aligned}$$
(E.1)

where \(H_{k+1}(j)\) does not depend on \({\varvec{\vartheta }}_{k+1}\). Therefore, it is straightforward to verify that, for any \(i,j=1,\ldots ,L\) and \(k=n,\ldots , T-1\),

$$\begin{aligned} \frac{\partial }{\partial \vartheta _{k+1}(j)}H_k(i) =\frac{Q(i,j)}{1+\rho } \left( {1 + {{\left( {\frac{{{H_{k + 1}}(j)Y(j)}}{{{\vartheta _{k + 1}}(j)}}} \right) }^{\frac{1}{{1 - \gamma }}}}} \right) ^{ - \gamma } \ge 0, \ \, \end{aligned}$$
(E.2)

which implies that \(H_k(i)\) is increasing in \({\varvec{\vartheta }}_{k+1}\). On the other hand, by (20) and (27), \({\hat{\phi }}_n(i)\) admits the following expression

$$\begin{aligned} \hat{\phi }_n(i)=\frac{1}{1+\left( \frac{H_n(i)Y(i)}{\vartheta _n(i)}\right) ^{\frac{1}{1-\gamma }}}, \end{aligned}$$
(E.3)

and hence it is decreasing in \({\varvec{\vartheta }}_{n+1}\). Moreover, (E.1) and (E.3) together imply that \(\hat{\phi }_n(i)\) depends on \({\varvec{\vartheta }}_{n+2}\) only via \(H_{n+1}(\cdot )\). Since (E.2) indicates that \(H_{n+1}(j)\) is increasing in \({\varvec{\vartheta }}_{n+2}\), \(\hat{\phi }_n(i)\) is also decreasing in \({\varvec{\vartheta }}_{n+2}\). Repeatedly using recursion (E.1) and the positiveness of the derivative in (E.2), we can conclude by the induction principle that the equilibrium consumption proportion \({\hat{\phi }}_n(i)\) is decreasing in \({{\varvec{\vartheta }}}_k\) for each \(k=n+1,n+2,\ldots ,T-1\).

The increasing property of \({\hat{\eta }}_n(i)\) with respect to \({\varvec{\vartheta }}_k\) for each \(k=n+1,n+2,\ldots ,T-1\) follows trivially from the equation \({\hat{\eta }}_n(i)=(1-{\hat{\phi }}_n(i)){\hat{\alpha }}_n(i)\) and the fact that \({\hat{\alpha }}_n(i)\) is irrelevant to \(\vartheta _n(i)\). The results with all elements Q being positive can be obtained in a complete parallel way.

Proof of Proposition 4.4

Proof

When the assumptions in Proposition 4.4 hold, by (18) and (21), \(H_n\) can be simplified as

$$\begin{aligned} H_n= & {} \sum \limits _{k = n + \mathrm{{1}}}^T {\frac{{\prod \limits _{m = n + 1}^{k - 1} {{{\left( {\frac{{{{({A_m})}^{\frac{1}{{1 - \gamma }}}}}}{{1 + {{({A_m})}^{\frac{1}{{1 - \gamma }}}}}}} \right) }^\gamma }Y} }}{{{{\left( {1 + \rho } \right) }^{k - n}}}}\frac{{{\vartheta _k}}}{{{{\left( {1 + {{({A_k})}^{\frac{1}{{1 - \gamma }}}}} \right) }^\gamma }}}}\nonumber \\= & {} \frac{\mathrm{{1}}}{{1 + \rho }}\frac{{{\vartheta _{n + 1}}}}{{{{\left( {1 + {{({A_{n + 1}})}^{\frac{1}{{1 - \gamma }}}}} \right) }^\gamma }}}+ \frac{\mathrm{{1}}}{{1 + \rho }}{\left( {\frac{{{{({A_{n + 1}})}^{\frac{1}{{1 - \gamma }}}}}}{{1 + {{({A_{n + 1}})}^{\frac{1}{{1 - \gamma }}}}}}} \right) ^\gamma }YH_{n + 1}, \end{aligned}$$

where \(Y=\mathrm{E}\left[ \left( (1-{\hat{\alpha }}_n)r_f+{\hat{\alpha }}_nR_n\right) ^{\gamma }\right] >0\). According to (20), substituting \(Y{H_n} = \vartheta _n{A_n}\) into the above equation yields

$$\begin{aligned} \frac{\vartheta _nA_n}{Y}= & {} \frac{{{\vartheta _{n + 1}}}}{{1 + \rho }}\frac{1}{{{{\left( {1 + {{({A_{n + 1}})}^{\frac{1}{{1 - \gamma }}}}} \right) }^\gamma }}}+ \frac{{{\vartheta _{n + 1}}}}{{1 + \rho }}{\left( {\frac{{{{({A_{n + 1}})}^{\frac{1}{{1 - \gamma }}}}}}{{1 + {{({A_{n + 1}})}^{\frac{1}{{1 - \gamma }}}}}}} \right) ^\gamma }{A_{n + 1}}\\= & {} \frac{{{\vartheta _{n + 1}}}}{{1 + \rho }}{\left( {1 + {{({A_{n + 1}})}^{\frac{1}{{1 - \gamma }}}}} \right) ^{1 - \gamma }}. \end{aligned}$$

Therefore, we have

$$\begin{aligned} {A_n} = \frac{{{\vartheta _{n + 1}}Y}}{{{\vartheta _n}(1 + \rho )}}{\left( {1 + {{({A_{n + 1}})}^{\frac{1}{{1 - \gamma }}}}} \right) ^{1 - \gamma }},~~n=0,1,\ldots ,T-1, \end{aligned}$$
(F.1)

with \(A_T=0\). Next, under the assumptions in Proposition 4.4, we show that \(A_n>A_{n+1}~(n=0,1,\ldots , T-1)\) by using induction principle. To this end, by (20), we first note that

$$\begin{aligned} A_{T-1}=0,~~\mathrm{{and}}~~{A_{T - 2}} = \frac{{{\vartheta _{T - 1}}Y}}{{{\vartheta _{T - 2}}(1 + \rho )}} \ge {A_{T - 1}}=0. \end{aligned}$$

In general, with the assumption \(A_{n+1}\ge A_{n+2}\), we obtain

$$\begin{aligned} \begin{aligned} {A_n} =&\frac{{{\vartheta _{n + 1}}Y}}{{{\vartheta _n}(1 + \rho )}}{\left( {1 + {{({A_{n + 1}})}^{\frac{1}{{1 - \gamma }}}}} \right) ^{1 - \gamma }}\\ \ge&\frac{{{\vartheta _{n + 1}}Y}}{{{\vartheta _n}(1 + \rho )}}{\left( {1 + {{({A_{n + 2}})}^{\frac{1}{{1 - \gamma }}}}} \right) ^{1 - \gamma }}\\ =&\frac{{{{({\vartheta _{n + 1}})}^2}}}{{{\vartheta _n}{\vartheta _{n + 2}}}}\frac{{{\vartheta _{n + 2}}Y}}{{{\vartheta _{n + 1}}(1 + \rho )}}{\left( {1 + {{({A_{n + 2}})}^{\frac{1}{{1 - \gamma }}}}} \right) ^{1 - \gamma }} = \frac{{{{({\vartheta _{n + 1}})}^2}}}{{{\vartheta _n}{\vartheta _{n + 2}}}}{A_{n + 1}}. \end{aligned} \end{aligned}$$

If \(\frac{{{\vartheta _n}}}{{{\vartheta _{n + 1}}}} \le \frac{{{\vartheta _{n + 1}}}}{{{\vartheta _{n + 2}}}},~~n=0,1,\ldots ,T-3\), then \(A_n\ge A_{n+1}\). Consequently, by (29), we obtain

$$\begin{aligned} \Lambda _{n+1}-\Lambda _n=Z\left[ \frac{1}{1+(A_n)^{\frac{1}{1-\gamma }}}-\frac{1}{1+(A_{n+1})^{\frac{1}{1-\gamma }}}\right] \le 0. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Weng, C. & Zeng, Y. Equilibrium consumption and portfolio decisions with stochastic discount rate and time-varying utility functions. OR Spectrum 40, 541–582 (2018). https://doi.org/10.1007/s00291-017-0502-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00291-017-0502-2

Keywords

Navigation