Skip to main content
Log in

An epsilon-based data envelopment analysis approach for solving performance measurement problems with interval and ordinal dual-role factors

  • Original Article
  • Published:
OR Spectrum Aims and scope Submit manuscript

Abstract

Data envelopment analysis (DEA) is a linear programming method for measuring the performance and efficiency of units called decision-making units (DMUs). In many real-world performance measurement problems, the input and output data are not precisely known. Furthermore, the data may include dual-role factors that can be considered an input and output factor simultaneously. We propose a novel DEA model in the presence of imprecise data and imprecise dual-role factors by developing a new pair of mixed binary linear epsilon-based DEA models. The proposed models estimate the lower and upper bound efficiency scores in the presence of interval input, output, and dual-role factors by considering a fixed and unified production frontier for all DMUs. We then extend our models by including the weak ordinal dual-role factors. In contrast to the existing methods that exclude the dual-role factors, we include the dual-role factors and find a strictly positive value for the lower bound of the weights of inputs, outputs, and dual-role factors. We present a case study to demonstrate the applicability and exhibit the superiority of our approach over the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ali A, Seiford L (1993) Computational accuracy and infinitesimals in data envelopment analysis. Infor 31(4):290–297

    Google Scholar 

  • Amin GR, Toloo M (2004) A polynomial-time algorithm for finding epsilon in DEA models. Comput Oper Res 31(5):803–805

    Article  Google Scholar 

  • Beasley JE (1990) Comparing university departments. Omega 18(2):171–183

    Article  Google Scholar 

  • Beasley JE (1995) Determining teaching and research efficiencies. J Oper Res Soc 46(4):441–452

    Article  Google Scholar 

  • Charnes A, Cooper WW, Rhodes E (1979) Measuring the efficiency of decision-making units. Eur J Oper Res 3(4):339

    Article  Google Scholar 

  • Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision making units. Eur J Oper Res 2:429–444

    Article  Google Scholar 

  • Charnes A, Rousseau J, Semple J (1993) An effective non-Archimedean anti-degeneracy/cycling linear programming method especially for data envelopment analysis and like models. Ann Oper Res 46–47(2):271–278

    Article  Google Scholar 

  • Chen WC (2021) On performance evaluation with a dual-role factor. Ann Oper Res. https://doi.org/10.1007/s10479-021-04102-3

    Article  Google Scholar 

  • Cooper WW, Park KS, Yu G (1999) IDEA and AR-IDEA: models for dealing with imprecise data in DEA. Manage Sci 45(4):597–607

    Article  Google Scholar 

  • Cook WD, Green RH, Zhu J (2006) Dual-role factors in data envelopment analysis. IIE Trans 38(2):105–115

    Article  Google Scholar 

  • Despotis DK, Smirlis YG (2002) Data envelopment analysis with imprecise data. Eur J Oper Res 140(1):24–36

    Article  Google Scholar 

  • Ding J, Dong W, Bi G, Liang L (2015) A decision model for supplier selection in the presence of dual-role factors. J Oper Res Soc 66(5):737–746

    Article  Google Scholar 

  • Ebrahimi B (2020) Efficiency measurement to identify the best efficient unit in the presence of dual-role factors. Int J Appl Dec Sci 13(1):93–108

    Google Scholar 

  • Ebrahimi B, Dellnitz A, Kleine A, Tavana M (2021) A novel method for solving data envelopment analysis problems with weak ordinal data using robust measures. Expert Syst Appl 164:113835

    Article  Google Scholar 

  • Ebrahimi B, Tavana M, Vincent C (2019) A note and new extensions on “interval efficiency measures in data envelopment analysis with imprecise data.” Oper Res Int Journal. https://doi.org/10.1007/s12351-019-00524-x

    Article  Google Scholar 

  • Ebrahimi B, Toloo M (2020) Efficiency bounds and efficiency classifications in imprecise DEA: an extension. J Oper Res Soc 71(3):491–504

    Article  Google Scholar 

  • Farzipoor Saen R (2010) Restricting weights in supplier selection decisions in the presence of dual-role factors. Appl Math Model 34(10):2820–2830

    Article  Google Scholar 

  • Farzipoor Saen R (2011) A decision model for selecting third-party reverse logistics providers in the presence of both dual-role factors and imprecise data. Asia Pacif J Oper Res 28:239–254

    Article  Google Scholar 

  • Garfamy RM (2006) A data envelopment analysis approach based on total cost of ownership for supplier selection. J Enterp Inf Manag 19(6):662–678

    Article  Google Scholar 

  • Izadikhah M, Saen RF, Ahmadi K (2017) How to assess sustainability of suppliers in the presence of dual-role factor and volume discounts? A data envelopment analysis approach. Asia-Pacific J Oper Res 34:1740016

    Article  Google Scholar 

  • Kao C (2006) Interval efficiency measures in data envelopment analysis with imprecise data. Eur J Oper Res 174(2):1087–1099

    Article  Google Scholar 

  • Mehrabian S, Jahanshahloo GR, Alirezaee R, Amin GR (2000) An assurance interval for the non-Archimedean epsilon in DEA models. Oper Res 48(2):344–347

    Article  Google Scholar 

  • Millan R et al (2019) Small satellites for space science: A COSPAR scientific roadmap. Adv Space Res 64(8):1466–1517

    Article  Google Scholar 

  • Podinovski VV, Bouzdine-Chameeva T (2017) Solving DEA models in a single optimization stage: Can the non-Archimedean infinitesimal be replaced by a small finite epsilon? Eur J Oper Res 257:412–419

    Article  Google Scholar 

  • Seydel J (2006) Data envelopment analysis for decision support. Ind Manag Data Syst 106(1):81–95

    Article  Google Scholar 

  • Su Y, Sun W (2018) Sustainability evaluation of the supply chain with undesired outputs and dual-role factors based on double frontier network DEA. Soft Comput 22:5525–5533

    Article  Google Scholar 

  • Talluri S, Baker RC (2002) A multi-phase mathematical programming approach for effective supply chain design. Eur J Oper Res 141(3):544–558

    Article  Google Scholar 

  • Talluri S, Narasimhan R (2004) A methodology for strategic sourcing. Eur J Oper Res 154(1):236–250

    Article  Google Scholar 

  • Toloo M, Ebrahimi B, Amin Gh (2021) New data envelopment analysis models for classifying flexible measures: the role of non-Archimedean epsilon. Eur J Oper Res. https://doi.org/10.1016/j.ejor.2020.11.029

    Article  Google Scholar 

  • Toloo M, Barat M (2015) On considering dual-role factor in supplier selection problem. Math Methods Oper Res 82:107–122

    Article  Google Scholar 

  • Toloo M, Keshavarz E, Hatami-Marbini A (2018) Dual-role factors for imprecise data envelopment analysis. Omega 77:15–31

    Article  Google Scholar 

  • Toloo M, Keshavarz E, Hatami-Marbini A (2020) An interval efficiency analysis with dual-role factors. Or Spectrum. https://doi.org/10.1007/s00291-020-00606-9

    Article  Google Scholar 

  • Wang YM, Greatbanks R, Yang JB (2005) Interval efficiency assessment using data envelopment analysis. Fuzzy Sets Syst 153(3):347–370

    Article  Google Scholar 

  • Zhu J (2003) Imprecise data envelopment analysis (IDEA): A review and improvement with an application. Eur J Oper Res 144(3):513–529

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers and the editor for their insightful comments and suggestions. Dr. Madjid Tavana is grateful for the partial financial support he received from the Czech Science Foundation (GACR 19-13946S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madjid Tavana.

Ethics declarations

Conflict of interest

The above authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Proofs of the Theorems.

Appendix A. Proofs of the Theorems.

1.1 Proof of Theorem 1

It is easy to see that \(({\varvec{v}},{\varvec{u}},\boldsymbol{\alpha },{\varvec{\beta}},{\varvec{\lambda}},{\varvec{\mu}},{\varvec{d}},{\varvec{b}},\varepsilon )=({0}_{m},{0}_{s},{0}_{K},{0}_{K},{0}_{T},{0}_{T},{0}_{K},{0}_{K},0)\) is a feasible solution for Model (10). Now, considering the first type constraints of Model (10) with the constraints of \(\varepsilon \le {v}_{i},\forall i\) implies:

$$\sum_{i=1}^{m}\varepsilon {x}_{ij}^{U}\le \sum\limits_{i=1}^{m}{v}_{i}{x}_{ij}^{U}\le 1, j=1,2,\ldots,n\Rightarrow \varepsilon \le \underset{\mathit{ j}=1,\ldots,n}{\mathrm{min}}\left\{1/\sum\limits_{i=1}^{m}{x}_{ij}^{U}\right\}$$

Hence, we found an upper bound for the objective value of Model (10) which implies \(0\le {\varepsilon }^{*}<\infty\). Now, we can show that \({\varepsilon }^{*}>0\).

Consider the LP Model (11). If we assume that \(({{\varvec{x}}}_{j}^{L},{{\varvec{w}}}_{j}^{L},{{\varvec{\theta}}}_{t})\in {\mathbb{R}}^{m+K+T}\) and \(({{\varvec{y}}}_{j}^{U},{{\varvec{w}}}_{j}^{U},1)\in {\mathbb{R}}^{s+K+T}\) are the input and output vectors for DMUj, respectively, then, Model (11) will be identical to Mehrabian et al.’s (2000) model, and, \({\varepsilon }_{1}^{*}>0\) (Amin and Toloo, 2004).

$$\begin{array}{ll}{\varepsilon }_{1}^{*}=\mathrm{max}{\varepsilon }_{1}& \\ \mathrm{s}.\mathrm{t}.& \\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\sum\limits_{k=1}^{K}{\beta }_{k}{w}_{kj}^{L}+\sum\limits_{t=1}^{T}{\mu }_{t}{\theta }_{t}+\sum\limits_{i=1}^{m}{v}_{i}{x}_{ij}^{L}\le 1\end{array}\end{array}\end{array}& j=1,\ldots,n\\ \sum_{r=1}^{s}{u}_{r}{y}_{rj}^{U}+\sum\limits_{k=1}^{K}{\alpha }_{k}{w}_{kj}^{U}-\sum\limits_{k=1}^{K}{\beta }_{k}{w}_{kj}^{L}+\sum\limits_{t=1}^{T}{\lambda }_{t}-\sum\limits_{t=1}^{T}{\mu }_{t}{\theta }_{t}-\sum_{i=1}^{m}{v}_{i}{x}_{ij}^{L}\le 0& j=1,\ldots,n\\ {\alpha }_{k},{\beta }_{k}\ge {\varepsilon }_{1}& k=1,\ldots,K\\ {\lambda }_{t},{\mu }_{t}\ge {\varepsilon }_{1}& t=1,\ldots,T\\ \begin{array}{c}{u}_{r}\ge {\varepsilon }_{1}\end{array}& r=1,\ldots,s\\ {v}_{i}\ge {\varepsilon }_{1}& i=1,\ldots,m\end{array}$$
(11)

Now, let \({({\varvec{v}}}^{*},{{\varvec{u}}}^{*},{\boldsymbol{\alpha }}^{*},{{\varvec{\beta}}}^{*},{{\varvec{\lambda}}}^{*},{{\varvec{\mu}}}^{*},{\varepsilon }_{1}^{*})\) be the optimal solution of Model (11). If \(\sum_{i=1}^{m}{v}_{i}^{*}{x}_{ij}^{U}\le 1, j=1,\ldots,n\), then it is evident that \(({{\varvec{v}}}^{*},{{\varvec{u}}}^{*},{0}_{K},{{\varvec{\beta}}}^{*},{0}_{T},{{\varvec{\mu}}}^{*},{\varepsilon =\varepsilon }_{1}^{*})\) together with \({{\varvec{d}}}_{K}={0}_{K}, {{\varvec{b}}}_{T}={1}_{T}\) is a feasible solution for Model (10). Otherwise, let \({\widehat{v}}_{i}=\frac{min\left\{{x}_{ij}^{L}\left|{x}_{ij}^{L}\ne 0\right., j=1,\ldots ,n\right\}}{max\left\{{x}_{ij}^{U}, j=1,\ldots ,n\right\}}{v}_{i}^{*}, i=1,\ldots ,m\), in this case \({\widehat{v}}_{i}>0, i=1,\ldots ,m\), and we can conclude:

$$\sum_{i=1}^{m}{\widehat{v}}_{i}{x}_{ij}^{U}\le \sum_{i=1}^{m}{v}_{i}^{*}{x}_{ij}^{L}\le \sum_{k=1}^{K}{\beta }_{k}^{*}{w}_{kj}^{L}+\sum_{t=1}^{T}{\mu }_{t}^{*}{\theta }_{t}+\sum_{i=1}^{m}{v}_{i}^{*}{x}_{ij}^{L}\le 1, j=1,\ldots ,n$$

Now, select \(\delta \ge 0\) such that the following relations are established:

$$\sum_{r=1}^{s}{u}_{r}^{*}{y}_{rj}^{U}+\sum_{k=1}^{K}{\alpha }_{k}^{*}{w}_{kj}^{U}-\sum_{k=1}^{K}{\beta }_{k}^{*}{w}_{kj}^{L}+\sum_{t=1}^{T}{\lambda }_{t}^{*}-\left({\mu }_{1}^{*}+\delta \right){\theta }_{1}-\sum_{t=2}^{T}{\mu }_{t}^{*}{\theta }_{t}-\sum_{i=1}^{m}{\widehat{v}}_{i}{x}_{ij}^{L}\le 0, j=1,\ldots ,n$$

Let \(\varepsilon =min\left\{{\varepsilon }_{1}^{*},{\widehat{v}}_{i}, i=1,\ldots ,m\right\}>0\), in this case \(({\widehat{{\varvec{v}}}}^{*},{{\varvec{u}}}^{*},{0}_{K},{{\varvec{\beta}}}^{*},{0}_{{\varvec{T}}},{\mu }_{1}^{*}+\delta ,{\mu }_{2}^{*},\ldots ,{\mu }_{T}^{*},\varepsilon )\) together with \({{\varvec{d}}}_{K}={0}_{K}, {{\varvec{b}}}_{T}={1}_{T}\) is a feasible solution for Model (10), and the proof is completed.

1.2 Proof of Theorem 2

We show Model (8) is feasible. The proof for Model (9) is similar. Let \(({{\varvec{v}}}^{\boldsymbol{*}},{{\varvec{u}}}^{\boldsymbol{*}},{\boldsymbol{\alpha }}^{\boldsymbol{*}},{{\varvec{\beta}}}^{\boldsymbol{*}},{{\varvec{\lambda}}}^{\boldsymbol{*}},{{\varvec{\mu}}}^{\boldsymbol{*}},{{\varvec{d}}}^{\boldsymbol{*}},{{\varvec{b}}}^{\boldsymbol{*}},{\varepsilon }^{*})\) be the optimal solution of Model (10). If \(\sum_{i=1}^{m}{v}_{i}^{*}{x}_{ip}^{L}=1\), then it is evident that \(({{\varvec{v}}}^{\boldsymbol{*}},{{\varvec{u}}}^{\boldsymbol{*}},{\boldsymbol{\alpha }}^{\boldsymbol{*}},{{\varvec{\beta}}}^{\boldsymbol{*}},{{\varvec{\lambda}}}^{\boldsymbol{*}},{{\varvec{\mu}}}^{\boldsymbol{*}},{{\varvec{d}}}^{\boldsymbol{*}},{{\varvec{b}}}^{\boldsymbol{*}},{\varepsilon }^{*})\) is a feasible solution to Model (8). Otherwise, let \({x}_{hp}^{L}>0,h\in \{1,2,\ldots,m\}\) and select \(\eta >0\) such that \(\sum_{\begin{array}{c}i=1\\ i\ne h\end{array}}^{m}{v}_{i}^{*}{x}_{ip}^{L}+({v}_{h}^{*}+\eta ){x}_{hp}^{L}=1\), in this case, we can conclude that:

$$\sum_{r=1}^{s}{u}_{r}^{*}{y}_{rj}^{U}+\sum_{k=1}^{K}{\alpha }_{k}^{*}{w}_{kj}^{U}-\sum_{k=1}^{K}{\beta }_{k}^{*}{w}_{kj}^{L}+\sum_{t=1}^{T}{\lambda }_{t}^{*}-\sum_{t=1}^{T}{\mu }_{t}^{*}{\theta }_{t}-(\sum_{\begin{array}{c}i=1\\ i\ne h\end{array}}^{m}{v}_{i}^{*}{x}_{ip}^{L}+({v}_{h}^{*}+\eta ){x}_{hp}^{L})\le \sum_{r=1}^{s}{u}_{r}^{*}{y}_{rj}^{U}+\sum_{k=1}^{K}{\alpha }_{k}^{*}{w}_{kj}^{U}-\sum_{k=1}^{K}{\beta }_{k}^{*}{w}_{kj}^{L}+\sum_{t=1}^{T}{\lambda }_{t}^{*}-\sum_{t=1}^{T}{\mu }_{t}^{*}{\theta }_{t}-\sum_{i=1}^{m}{v}_{i}^{*}{x}_{ij}^{L}\le 0, j=1,\ldots ,n$$

As a result, the new vector \(({v}_{1}^{*},\ldots,{v}_{h}^{*}+\eta ,\ldots,{v}_{m}^{*},{{\varvec{u}}}^{\boldsymbol{*}},{\boldsymbol{\alpha }}^{\boldsymbol{*}},{{\varvec{\beta}}}^{\boldsymbol{*}},{{\varvec{\lambda}}}^{\boldsymbol{*}},{{\varvec{\mu}}}^{\boldsymbol{*}},{{\varvec{d}}}^{\boldsymbol{*}},{{\varvec{b}}}^{\boldsymbol{*}},{\varepsilon }^{*})\) satisfies all constraints of Model (8), which completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, B., Tavana, M., Kleine, A. et al. An epsilon-based data envelopment analysis approach for solving performance measurement problems with interval and ordinal dual-role factors. OR Spectrum 43, 1103–1124 (2021). https://doi.org/10.1007/s00291-021-00649-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00291-021-00649-6

Keywords

Navigation