Skip to main content
Log in

Γ-convergence of Variational Integrators for Constrained Systems

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

For a physical system described by a motion in an energy landscape under holonomic constraints, we study the Γ-convergence of variational integrators to the corresponding continuum action functional and the convergence properties of solutions of the discrete Euler–Lagrange equations to stationary points of the continuum problem. This extends the results in Müller and Ortiz (J. Nonlinear Sci. 14:279–296, 2004) to constrained systems. The convergence result is illustrated with examples of mass point systems and flexible multibody dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, H.C.: RATTLE: A velocity version of the SHAKE algorithm for molecular dynamics calculations. J. Comput. Phys. 52(1), 24–34 (1983)

    Article  MATH  Google Scholar 

  • Bauchau, O.A., Damilano, G., Theron, N.J.: Numerical integration of non-linear elastic multi-body systems. Int. J. Numer. Methods Eng. 38, 2727–2751 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Belytschko, T., Mullen, R.: Mesh partitions of explicit–implicit time integrators. In: Bathe, K.-J., Oden, J.T., Wunderlich, W. (eds.) Formulations and Computational Algorithms in Finite Element Analysis, pp. 673–690. MIT Press, Cambridge (1976)

    Google Scholar 

  • Belytschko, T.: Partitioned and adaptive algorithms for explicit time integration. In: Wunderlich, W. (ed.) Nonlinear Finite Element Analysis in Structural Mechanics, pp. 572–584. Springer, New York (1981)

    Google Scholar 

  • Betsch, P.: The discrete null space method for the energy consistent integration of constrained mechanical systems. Part I: Holonomic constraints. Comput. Methods Appl. Mech. Eng. 194(50–52), 5159–5190 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Betsch, P., Leyendecker, S.: The discrete null space method for the energy consistent integration of constrained mechanical systems. Part II: Multibody dynamics. Int. J. Numer. Methods Eng. 67(4), 499–552 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Betsch, P., Steinmann, P.: Frame-indifferent beam finite elements based upon the geometrically exact beam theory. Int. J. Numer. Methods Eng. 54, 1775–1788 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Dal Maso, G.: An Introduction to Γ-Convergence. Birkhäuser, Boston (1993)

    Google Scholar 

  • Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  • Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Englewood Cliffs (1987)

    MATH  Google Scholar 

  • Ibrahimbegović, A., Mamouri, S.: Energy conserving/decaying implicit time-stepping scheme for nonlinear dynamics of three-dimensional beams undergoing finite rotations. Comput. Methods Appl. Mech. Eng. 4241–4258 (2002)

  • Jay, L.O.: Symplectic partitioned Runge–Kutta methods for constrained Hamiltonian systems. SIAM J. Numer. Anal. 33(1), 368–387 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Jay, L.O.: Structure preservation for constrained dynamics with super partitioned additive Runge–Kutta methods. SIAM J. Sci. Comput. 20(2), 416–446 (1998)

    Article  MathSciNet  Google Scholar 

  • Leimkuhler, B., Reich, S.: Symplectic integration of constrained Hamiltonian systems. Math. Comput. 63, 589–605 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • Leyendecker, S., Betsch, P., Steinmann, P.: Energy-conserving integration of constrained Hamiltonian systems—a comparison of approaches. Comput. Mech. 33, 174–185 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Leyendecker, S., Betsch, P., Steinmann, P.: Objective energy–momentum conserving integration for the constrained dynamics of geometrically exact beams. Comput. Methods Appl. Mech. Eng. 195, 2313–2333 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Leyendecker, S., Betsch, P., Steinmann, P.: The discrete null space method for the energy consistent integration of constrained mechanical systems. Part III: Flexible multibody dynamics. Multibody Syst. Dyn. 19, 45–72 (2008a)

    Article  MATH  MathSciNet  Google Scholar 

  • Leyendecker, S., Marsden, J.E., Ortiz, M.: Variational integrators for constrained dynamical systems. ZAMM 88, 677–708 (2008b)

    Article  MATH  Google Scholar 

  • Maggi, F., Morini, M.: A Γ-convergence result for variational integrators of Lagrangians with quadratic growth. ESAIM Control Optim. Calc. Var. 10, 656–665 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numer. 10, 357–514 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • McLachlan, R.I., Perlmutter, M.: Integrators for nonholonomic mechanical systems. J. Nonlinear Sci. 16, 283–328 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Müller, S., Ortiz, M.: On the gamma-convergence of discrete dynamics and variational integrators. J. Nonlinear Sci. 14(4), 153–212 (2004)

    Google Scholar 

  • Reich, S.: Symplectic integrators for systems of rigid bodies. Fields Inst. Commun. 10, 181–191 (1996)

    Google Scholar 

  • Romero, I., Armero, F.: An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy–momentum scheme in dynamics. Int. J. Numer. Methods Eng. 54, 1683–1716 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Schmidt.

Additional information

Communicated by Robert V. Kohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, B., Leyendecker, S. & Ortiz, M. Γ-convergence of Variational Integrators for Constrained Systems. J Nonlinear Sci 19, 153–177 (2009). https://doi.org/10.1007/s00332-008-9030-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-008-9030-1

Keywords

Mathematics Subject Classification (2000)

Navigation