Skip to main content
Log in

Dissipative N-point-vortex Models in the Plane

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

A method is presented for constructing point vortex models in the plane that dissipate the Hamiltonian function at any prescribed rate and yet conserve the level sets of the invariants of the Hamiltonian model arising from the SE (2) symmetries. The method is purely geometric in that it uses the level sets of the Hamiltonian and the invariants to construct the dissipative field and is based on elementary classical geometry in ℝ3. Extension to higher-dimensional spaces, such as the point vortex phase space, is done using exterior algebra. The method is in fact general enough to apply to any smooth finite-dimensional system with conserved quantities, and, for certain special cases, the dissipative vector field constructed can be associated with an appropriately defined double Nambu–Poisson bracket. The most interesting feature of this method is that it allows for an infinite sequence of such dissipative vector fields to be constructed by repeated application of a symmetric linear operator (matrix) at each point of the intersection of the level sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis, and Applications, 2nd edn. Applied Mathematical Sciences, vol. 75, Springer, New York (1988)

    Book  MATH  Google Scholar 

  • Agullo, O., Verga, A.D.: Exact two vortices solution of Navier–Stokes equations. Phys. Rev. Lett. 78(12), 2361–2364 (1997)

    Article  Google Scholar 

  • Agullo, O., Verga, A.D.: Effect of viscosity in the dynamics of two point vortices: exact results. Phys. Rev. E 63, 056304-1–056304-14 (2001)

    Article  Google Scholar 

  • Baleanu, D., Makhaldiani, N.: Nambu–Poisson reformulation of the finite dimensional dynamical systems. arXiv:solv-int/9903002v1 (1999)

  • Bloch, A.M., Brockett, R.W., Ratiu, T.S.: Completely integrable gradient flows. Commun. Math. Phys. 147, 57–74 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Ratiu, T.S.: The Euler–Poincaré equations and double bracket dissipation. Commun. Math. Phys. 175, 1–42 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Bloch, A.M., Brockett, R.W., Crouch, P.: Double bracket equations and geodesic flows on symmetric spaces. Commun. Math. Phys. 187, 357–373 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Boatto, S., Koiller, J.: Vortices on closed surfaces. arXiv:0802.4313 (2008)

  • Brockett, R.W.: Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems. Linear Algebra Appl. 146, 79–91 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Brockett, R.W.: Differential geometry and the design of gradient algorithms. Proc. Symp. Pure Math., AMS 54(I), 69–92 (1993)

    MathSciNet  Google Scholar 

  • Brockett, R.W.: The double bracket equation as a solution of a variational problem. Fields Inst. Commun. 3, 69–76 (1994)

    MathSciNet  Google Scholar 

  • Chatterjee, R.: Dynamical symmetries and Nambu mechanics. Lett. Math. Phys. 36, 117 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Chorin, A.J.: Numerical study of slightly viscous flow. J. Fluid Mech. 57(4), 785–796 (1973)

    Article  MathSciNet  Google Scholar 

  • Chorin, A.J.: Vortex sheet approximation of boundary layers. J. Comput. Phys. 27, 428–442 (1978)

    Article  MATH  Google Scholar 

  • Cottet, G.-H., Koumoutsakos, P.: Vortex Methods: Theory and Practice. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  • do Carmo, M.P.: Differential Forms and Applications. Universitext, Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  • Guha, P.: Volume preserving multidimensional integrable systems and Nambu–Poisson geometry. J. Nonlin. Math. Phys. 8(3), 325–341 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Guha, P.: Applications of Nambu Mechanics to Systems of Hydrodynamical Type II. J. Nonlin. Math. Phys. 11(2), 223–232 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Holm, D.D.: Geometric Mechanics, Part I: Dynamics and Symmetry. Imperial College Press, London (2008a)

    Google Scholar 

  • Holm, D.D.: Geometric Mechanics, Part II: Rotating, Translating and Rolling. Imperial College Press, London (2008b)

    MATH  Google Scholar 

  • Holm, D.D., Putkaradze, V., Tronci, C.: Geometric gradient-flow dynamics with singular solutions. Physica D (2008). doi:10.1016/j.physd.2008.04.010

    Google Scholar 

  • Kidambi, R., Newton, P.K.: Motion of three point vortices on a sphere. Physica D 116, 143–175 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Kozlov, V.V.: Dynamical Systems X: General Theory of Vortices. Encyclopedia of Mathematical Sciences, vol. 67. Springer, Berlin (2008)

    Google Scholar 

  • Leonard, A.: Computing three-dimensional incompressible flows with vortex elements. Annu. Rev. Fluid Mech. 17, 523–559 (1985)

    Article  Google Scholar 

  • Makhaldiani, N.: The system of three vortexes of two dimensional ideal hydrodynamics as a new example of the (integrable) Nambu–Poisson mechanics. arXiv:solv-int/9804002v1 (1998)

  • Marsden, J., Weinstein, A.: Coadjoint orbits, vortices and Clebsch variables for incompressible fluids. Physica D 7, 305–323 (1983)

    Article  MathSciNet  Google Scholar 

  • Melander, M.V., Zabusky, N.J., Styczek, A.S.: Moment model for vortex interactions. Part I. J. Fluid Mech. 167, 95–115 (1986)

    MATH  Google Scholar 

  • Melander, M.V., Zabusky, N.J., McWilliams, J.C.: Symmetric vortex merger in two dimensions: causes and conditions. J. Fluid Mech. 195, 303–340 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Nambu, Y.: Generalized Hamiltonian mechanics. Phys. Rev. D 7, 2405–2412 (1973)

    Article  MathSciNet  Google Scholar 

  • Nevir, P., Blender, R.: A Nambu representation of incompressible hydrodynamics using helicity and enstrophy. J. Phys. A, Math. Gen. 26, L1189–L1193 (1993)

    Article  MathSciNet  Google Scholar 

  • Newton, P.K.: The N-Vortex Problem: Analytical Techniques. Applied Mathematical Sciences, vol. 145. Springer, Berlin (2001)

    MATH  Google Scholar 

  • Poincaré, H.: Théorie des Tourbillons. Leçons profesées pendant le deuxième semestre 1891–92. G. Carre, Paris (1893) (available online at http://digital.library.cornell.edu/cgi/t/text/text-idx?c=math;idno=01800002)

    Google Scholar 

  • Saffman, P.G.: Vortex Dynamics. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  • Scobelev, B.Yu., Shmagunov, O.A.: A new approach to the modeling viscous diffusion in vortex element methods. In: Krause, E., Gersten, K. (eds.) IUTAM Symposium on Dynamics of Slender Vortices. Fluid Mechanics and its Applications, pp. 95–104. Kluwer Academic, Dordrecht (1998)

    Chapter  Google Scholar 

  • Takhtajan, L.: On foundation of the generalized Nambu mechanics. Commun. Math. Phys. 160, 295–315 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Ting, L., Klein, R.: Viscous Vortical Flows. Lecture Notes in Physics, vol. 374. Springer, Berlin (1991)

    MATH  Google Scholar 

  • Truesdell, C.: The Kinematics of Vorticity. Indiana University Press, Bloomington (1954)

    MATH  Google Scholar 

  • van de Fliert, B.W., van Groesen, E.: Monopolar vortices as relative equilibria and their dissipative decay. Nonlinearity 5, 473–495 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banavara N. Shashikanth.

Additional information

Communicated by C. Rowley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shashikanth, B.N. Dissipative N-point-vortex Models in the Plane. J Nonlinear Sci 20, 81–103 (2010). https://doi.org/10.1007/s00332-009-9051-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-009-9051-4

Keywords

Mathematics Subject Classification (2000)

Navigation