Skip to main content
Log in

A 2D-Planar Dielectrophoretic Model with Electro-Thermally Induced Fluid Motion and the Stability of Trapping Zones

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

Dielectrophoresis (DEP) is an electrokinetics-based phenomenon that involves the motion of a particle due to the interaction between an applied nonuniform electric field and an induced dipole moment. This technique is very effective in particle manipulation and separation. Earlier studies on control-amenable models to describe the motion of a neutrally buoyant, neutrally charged particle in a chamber with a parallel electrode array have restricted the motion of the particle to one dimension. Here, incorporating the electro-thermal fluid motion as well, we present a 2D-planar DEP model and study the effect of electro-thermal fluid motion on particle trapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Chang, D.E., Petit, N.: Toward controlling dielectrophoresis. Int. J. Robust Nonlinear Control 15(16), 769–784 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Chang, D.E., Loire, S., Mezic, I.: Closed-form solutions in the electrical field analysis for dielectrophoretic and travelling wave interdigitated electrode arrays. J. Phys. D, Appl. Phys. 36(23), 3073–3078 (2003)

    Article  Google Scholar 

  • Gielen, F., DeMello, A.J., Cass, T., Edel, J.B.: Increasing the trapping efficiency of particles in microfluidic planar platforms by means of negative dielectrophoresis. J. Phys. Chem. B 113(5), 1493–1500 (2009)

    Article  Google Scholar 

  • Green, N.G., Morgan, H.: Dielectrophoretic investigations of sub-micrometre latex spheres. J. Phys. D, Appl. Phys. 30(18), 2626–2633 (1997)

    Article  Google Scholar 

  • Green, N.G., Morgan, H.: Separation of submicrometre particles using a combination of dielectrophoretic and electrohydrodynamic forces. J. Phys. D, Appl. Phys. 31(7), L25–L30 (1998)

    Article  Google Scholar 

  • Green, N.G., Ramos, A., González, A., Castellanos, A., Morgan, H.: Electrothermally induced fluid flow on microelectrodes. J. Electrost. 53(2), 71–87 (2001)

    Article  Google Scholar 

  • Grom, F., Kentsch, J., Müller, T., Schnelle, T., Stelzle, M.: Accumulaion and trapping of hepatitis a virus particles by electrohydrodynamic flow and dielectrophoresis. Electrophoresis 27(7), 1386–1393 (2006)

    Article  Google Scholar 

  • Heida, T., Rutten, W.L.C., Marani, E.: Understanding dielectrophoretic trapping of neuronal cells: modelling electric field, electrode-liquid interface and fluid flow. J. Phys. D, Appl. Phys. 35(13), 1592–1602 (2002)

    Article  Google Scholar 

  • Hölzel, R., Calander, N., Chiragwandi, Z., Willander, M., Bier, F.F.: Trapping single molecules by dielectrophoresis. Phys. Rev. Lett. 95(12) (2005)

  • Huang, J., Wang, G., Tseng, K., Fang, S.: A chip for catching, separating, and transporting bio-particles with dielectrophoresis. J. Ind. Microbiol. Biotech. 35(11), 1551–1557 (2008)

    Article  Google Scholar 

  • Hughes, M.P.: Nanoelectromechanics in Engineering and Biology. CRC Press, Boca Raton (2002)

    Book  Google Scholar 

  • Hughes, M.P., Morgan, H.: Dielectrophoretic trapping of single sub-micrometre scale bioparticles. J. Phys. D, Appl. Phys. 31(17), 2205–2210 (1998)

    Article  Google Scholar 

  • Jones, T.B.: Electromechanics of Particles. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  • Jones, T.B., Bliss, G.W.: Bubble dielectrophoresis. J. Appl. Phys. 48(4), 1412–1417 (1977)

    Article  Google Scholar 

  • Jones, T.B., Kallio, G.A.: Dielectrophoretic levitation of spheres and shells. J. Electrost. 6(3), 207–224 (1979)

    Article  Google Scholar 

  • Jones, T.B., Kraybill, J.P.: Active feedback-controlled dielectrophoretic levitation. J. Appl. Phys. 60(4), 1247–1252 (1986)

    Article  Google Scholar 

  • Kaler, K.V.I.S., Jones, T.B.: Dielectrophoretic spectra of single cells determined by feedback-controlled levitation. Biophys. J. 57(2), 173–182 (1990)

    Article  MATH  Google Scholar 

  • Lapizco-Encinas, B.H., Rito-Palomares, M.: Dielectrophoresis for the manipulation of nanobioparticles. Electrophoresis 28(24), 4521–4538 (2007)

    Article  Google Scholar 

  • Morgan, H., Sun, T., Holmes, D., Gawad, S., Green, N.G.: Single cell dielectric spectroscopy. J. Phys. D, Appl. Phys. 40(1), 61–70 (2007)

    Article  Google Scholar 

  • Muller, T., Gerardino, A., Schnelle, T., Shirley, S.G., Bordoni, F., De Gasperis, G., Leoni, R., Fuhr, G.: Trapping of micrometre and sub-micrometre particles by high-frequency electric fields and hydrodynamic forces. J. Phys. D, Appl. Phys. 29(2), 340–349 (1996)

    Article  Google Scholar 

  • Pethig, R.: Dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4(2) (2010)

  • Pohl, H.A.: Dielectrophoresis. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  • Ramos, A., Morgan, H., Green, N.G., Castellanos, A.: Ac electrokinetics: a review of forces in microelectrode structures. J. Phys. D, Appl. Phys. 31, 3338–3353 (1998)

    Article  Google Scholar 

  • Thomas, R.S., Morgan, H., Green, N.G.: Negative dep traps for single cell immobilisation. Lab Chip 9(11), 1534–1540 (2009)

    Article  Google Scholar 

  • Tuval, I., Mezic, I., Bottausci, F., Zhang, Y.T., MacDonald, N.C., Piro, O.: Control of particles in microelectrode devices. Phys. Rev. Lett. 95, 236002 (2005)

    Article  Google Scholar 

  • Wood, J.A., Zhang, B., Tomkins, M.R., Docoslis, A.: Numerical investigation of ac electrokinetic virus trapping inside high ionic strength media. Microfluid. Nanofluid. 3(5), 547–560 (2007)

    Article  Google Scholar 

  • Zhang, C., Khoshmanesh, K., Mitchell, A., Kalantar-Zadeh, K.: Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Anal. Bioanal. Chem. 396(1), 401–420 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank professor D.E. Chang for introducing them to the field of modeling and control of a dielectrophoretic system. They would also like to thank the anonymous reviewers for their constructive comments, which greatly contributed to improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Simha.

Additional information

Communicated by A. Szeri.

Appendix:  Analysis of the Equilibrium Point/Points on \(\tilde {x}^{*}_{1}=\pm\frac{1}{2}\)

Appendix:  Analysis of the Equilibrium Point/Points on \(\tilde {x}^{*}_{1}=\pm\frac{1}{2}\)

In this case, \(\dot{\tilde{x}}_{2}(\tilde{x}_{1} = \pm\frac{1}{2},\tilde {x}_{2})=0\) implies

$$\begin{aligned} \tilde{x}_2^2 \mathrm{e}^{ (\frac{\pi \beta-1}{\beta} ) \tilde{x}_2} = \mp \frac{\bar{v}_{\mathrm{dep}}}{\pi u_0}. \end{aligned}$$
(31)

Note that the existence and uniqueness of a solution for \(\tilde{x}_{2}\) in Eq. (31) depends on the signs of the terms \(\bar{v}_{\mathrm{dep}}\) and πβ−1. An equilibrium point exists on the \(\tilde{x}_{1} =\frac{1}{2}\) line only if \(\bar{v}_{\mathrm {dep}}<0\) and similarly on the \(\tilde{x}_{1} = -\frac{1}{2}\) line only if \(\bar{v}_{\mathrm{dep}}>0\). Assuming that this condition is satisfied, the existence and uniqueness (which depend on the sign of πβ−1) of the solution are studied next.

Case 1 \((\beta\geq\frac{1}{\pi} )\): The LHS of Eq. (31) is such that

$$\begin{aligned} \frac{d}{d \tilde{x}_2} \tilde{x}_2^2 \mathrm{e}^{ (\frac{\pi \beta-1}{\beta} ) \tilde{x}_2} &= \frac {\tilde{x}_2 \mathrm{e}^{\frac{\tilde{x}_2 (\pi \beta-1)}{\beta}} (\tilde{x}_2 (\pi \beta-1)+2 \beta )}{\beta}>0 , \\ \lim_{\tilde{x}_2\rightarrow0} \tilde{x}_2^2 \mathrm{e}^{ (\frac{\pi \beta-1}{\beta} ) \tilde{x}_2} &=0, \\ \lim_{\tilde{x}_2\rightarrow\infty} \tilde{x}_2^2 \mathrm{e}^{ (\frac{\pi \beta-1}{\beta} ) \tilde{x}_2} &=\infty. \end{aligned}$$

Therefore \(\tilde{x}_{2}^{2} \mathrm{e}^{ (\frac{\pi \beta-1}{\beta} ) \tilde{x}_{2}}\) is a continuously increasing function of \(\tilde{x}_{2}\). Hence (31) has a unique solution. Further, since we have a condition on \(|\bar{v}_{\mathrm{dep}}|\) in (28), the unique solution for Eq. (31) is such that \(\tilde{x}^{*}_{2}(\bar{v}_{\mathrm{dep}}) < 2 \beta\).

Case 2 \(( \beta<\frac{1}{\pi} )\): In this case, we have a solution only if

$$\begin{aligned} |\bar{v}_{\mathrm{dep}}| \leq\frac{4\pi u_0 \beta^2 \mathrm{e}^{-2}}{ (\pi \beta-1)^2}. \end{aligned}$$
(32)

Since \(\frac{\mathrm{e}^{-2}}{ (\pi \beta-1)^{2}} > \mathrm{e}^{2( \pi \beta-1) }\), from (28) and (32) we have

$$\begin{aligned} |\bar{v}_{\mathrm{dep}}| < 4 \pi u_0 \beta^2 \mathrm{e}^{2( \pi \beta-1) }<\frac{4\pi u_0 \beta^2 \mathrm {e}^{-2}}{ (\pi \beta-1)^2}. \end{aligned}$$

Therefore, the condition in (28) ensures that the condition in (32) is satisfied. Also, we have two solutions for the equation (31): one solution is such that \(\tilde {x}^{*}_{2}(\bar{v}_{\mathrm{dep}})< 2 \beta<\frac{2 \beta}{1-\pi \beta }\) and another is such that \(\tilde{x}^{*}_{2}(\bar{v}_{\mathrm{dep}})> \frac{2 \beta}{1-\pi \beta}> 2 \beta\).

The nature of these equilibrium points and their dependence on \(\bar {v}_{\mathrm{dep}}\) are studied next.

Nature of the equilibrium points: Let \(\tilde{x}^{*}_{2}\) be a solution (in case of \(\beta\geq\frac{1}{\pi}\)) or one of the solutions (in case of \(\beta< \frac{1}{\pi}\)) of Eq. (31). Then the Jacobian evaluated at the equilibrium point \((\tilde{x}^{*}_{1} = \pm\frac{1}{2}, \tilde{x}^{*}_{2})\) is given by

$$\begin{aligned} J^* = \begin{bmatrix} \frac{\pm\mathrm{e}^{-\frac{\tilde{x}^*_2}{\beta}} \pi u_0 \tilde {x}^*_2 (\tilde{x}^*_2-2 \beta )}{\beta} & 0 \\ 0 & \frac{\pm\mathrm{e}^{-\frac{\tilde{x}^*_2}{\beta}} \pi u_0 (2 \beta-\tilde{x}^*_2 ) \tilde{x}^*_2-\mathrm{e}^{-\pi \tilde{x}^*_2} \pi\beta\bar{v}_{\mathrm{dep}}}{\beta} \end{bmatrix} \end{aligned}$$

and the corresponding eigenvalues are

$$\begin{aligned} \lambda_1 &= \pm\frac{\pi u_0 \tilde{x}^*_2 \mathrm{e}^{-\frac{\tilde {x}^*_2}{\beta}} (\tilde{x}^*_2-2 \beta )}{\beta}, \\ \lambda_2 &= \frac{\bar{v}_{\mathrm{dep}} \mathrm{e}^{-\pi\tilde {x}^*_2}}{\beta\tilde{x}^*_2} \bigl( \tilde{x}^*_2(1-\pi\beta)-2 \beta\bigr). \end{aligned}$$

The signs of λ 1 and λ 2 in the different cases are summarized in Table 1. Note that in either case (\(\beta\geq\frac{1}{\pi} \) or \(\beta<\frac{1}{\pi} \)), we have λ 1 λ 2<0 and hence the equilibrium point/points on \(\tilde{x}^{*}_{1}=\pm\frac{1}{2}\) is/are always saddle points irrespective of the sign of the parameter \(\bar{v}_{\mathrm{dep}}\).

Table 1 Analysis of the equilibrium point/points on \(\tilde{x}^{*}_{1}=\pm \frac{1}{2}\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simha, H., Banavar, R.N. A 2D-Planar Dielectrophoretic Model with Electro-Thermally Induced Fluid Motion and the Stability of Trapping Zones. J Nonlinear Sci 23, 1001–1021 (2013). https://doi.org/10.1007/s00332-013-9176-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-013-9176-3

Keywords

Mathematics Subject Classification (2010)

Navigation