Skip to main content
Log in

Global Smooth Solutions to the n-Dimensional Damped Models of Incompressible Fluid Mechanics with Small Initial Datum

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we consider the \(n\)-dimensional (\(n\ge 2\)) damped models of incompressible fluid mechanics in Besov spaces and establish the global (in time) regularity of classical solutions provided that the initial data are suitable small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abidi, H., HmidI, T.: On the global well-posedness for Boussinesq system. J. Differ. Equ. 233(1), 199–220 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Adhikar, D., Cao, C., Wu, J., Xu, X.: Small global solutions to the damped two-dimensional Boussinesq equations. J. Differ. Equ. 256, 3594–3613 (2014)

    Article  Google Scholar 

  • Bahour, H., Chemin, J., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, vol. 343. Springer, Heidelberg (2011)

    Book  Google Scholar 

  • Beale, J., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94, 61–66 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  • Caffarelli, L., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171, 1903–1930 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Caflisch, R., Klapper, I., Steele, G.: Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD. Commun. Math. Phys. 184, 443–455 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Cannone, M., Chen, Q., Miao, C.: A losing estimate for the Ideal MHD equations with application to Blow-up criterion. SIAM J. Math. Anal. 38, 1847–1859 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Cao, C., Regmi, D., Wu, J.: The 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion. J. Differ. Equ. 254, 2661–2681 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Cao, C., Titi, E.: Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. Math. 166, 245–267 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Cao, C., Wu, J.: Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion. Adv. Math. 226, 1803–1822 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Cao, C., Wu, J.: Global regularity for the 2D anisotropic Boussinesq equations with vertical dissipation. Arch. Ration. Mech. Anal. 208, 985–1004 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Cao, C., Wu, J., Yuan, B.: The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion. SIAM J. Math. Anal. 46, 588–602 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  • Chae, D.: Local existence and blow-up criterion for the Euler equations in the Besov spaces. Asymptot. Anal. 38, 339–358 (2004)

    MATH  MathSciNet  Google Scholar 

  • Chae, D.: Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv. Math. 203, 497–513 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Chae, D.: On the continuation principles for the Euler equations and the quasi-geostrophic equation. J. Differ. Equ. 227, 640–651 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Chae, D., Constantin, P., Córdoba, D., Gancedo, F., Wu, J.: Generalized surface quasi-geostrophic equations with singular velocities. Commun. Pure Appl. Math. 65, 1037–1066 (2012)

    Article  MATH  Google Scholar 

  • Chae, D.: Constantin, Wu, J.: Inviscid models generalizing the 2D Euler and the surface quasi-geostrophic equations. Arch. Ration. Mech. Anal. 202, 35–62 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Chae, D., Lee, J.: Global well-posedness in the super-critical dissipative quasigeostrophic equations. Commun. Math. Phys. 233, 297–311 (2003)

    MATH  MathSciNet  Google Scholar 

  • Chae, D., Nam, H.: Local existence and blow-up criterion for the boussinesq equations. Proc. R. Soc. Edinburgh Sect. A. 127, 935–946 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Chae, D., Wu, J.: The 2D Boussinesq equations with logarithmically supercritical velocities. Adv. Math. 230, 1618–1645 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Chemin, C.: Perfect Incompressible Fluids. Oxford University Press, New York (2009)

    Google Scholar 

  • Chen, Q., Miao, C., Zhang, Z.: A new Bernstein’s inequality and the 2D dissipative quasi-geostrophic equation. Commun. Math. Phys. 271, 821–838 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Chen, Q., Miao, C., Zhang, Z.: On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations. Commun. Math. Phys. 284, 919–930 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Chen, Q., Miao, C., Zhang, Z.: On the well-posedness of the ideal MHD equations in the Triebel–Lizorkin spaces. Arch. Ration. Mech. Anal. 195, 561–578 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Constantin, P.: Geometric statistics in turbulence. SIAM Rev. 36, 73–98 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • Constantin, P.: On the Euler equations of incompressible fluids. Bull. Am. Math. Soc. 44, 603–621 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Constantin, P., Córdoba, D., Wu, J.: On the critical dissipative quasi-geostrophic equation. Indiana Univ. Math. J. 50, 97–107 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Constantin, P., Fefferman, C., Majda, A.: Geometric constraints on potential singularity formulation in the 3-D Euler equations. Commun. Partial Differ. Equ. 21, 559–571 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Constantin, P., Foias, C.: Navier-Stokes Equations, Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1988)

    Google Scholar 

  • Constantin, P., Tarfulea, A., Vicol, V.: Absence of anomalous dissipation of energy in forced two dimensional fluid equations. Arch. Ration. Mech. Anal. 212, 875–903 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  • Constantin, P., Vicol, V.: Nonlinear maximum principles for dissipative linear nonlocal operators and applications. Geom. Funct. Anal. 22, 1289–1321 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Constantin, P., Wu, J.: Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30, 937–948 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Constantin, P., Wu, J.: Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 25, 1103–1110 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Constantin, P., Wu, J.: Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 159–180 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Córdoba, A., Córdoba, D.: A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249, 511–528 (2004)

    Article  MATH  Google Scholar 

  • Danchin, R.: Remarks on the lifespan of the solutions to some models of incompressible fluid mechanics. Proc. Am. Math. Soc. 141, 1979–1993 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Danchin, R., Paicu, M.: Global well-posedness issues for the inviscid Boussinesq system with Yudovich’s type data. Commun. Math. Phys. 290, 1–14 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Danchin, R., Paicu, M.: Global existence results for the anisotropic Boussinesq system in dimension two. Math. Models Methods Appl. Sci. 21, 421–457 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Dong, H., Li, D.: Spatial analyticity of the solutions to the subcritical dissipative quasigeostrophic equations. Arch. Ration. Mech. Anal. 189, 131–158 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Fan, J., Malaikah, H., Monaquel, S., Nakamura, G., Zhou, Y.: Global Cauchy problem of 2D generalized MHD equations. Monatsh. Math. 175, 127–131 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  • Gancedo, F.: Existence for the \(\alpha \)-patch model and the QG sharp front in Sobolev spaces. Adv. Math. 217, 2569–2598 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Hmidi, T., Keraani, S.: Keraani, Global solutions of the super-critical 2D quasi-geostrophic equation in Besov spaces. Adv. Math. 214, 618–638 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Hmidi, T., Keraani, S., Rousset, F.: Global well-posedness for a Boussinesq–Navier–Stokes system with critical dissipation. J. Differ. Equ. 249, 2147–2174 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Hmidi, T., Keraani, S., Rousset, F.: Global well-posedness for Euler–Boussinesq system with critical dissipation. Commun. Partial Differ. Equ. 36, 420–445 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Hou, T.Y., Li, C.: Global well-posedness of the viscous Boussinesq equations. Discret. Contin. Dyn. Syst. 12, 1–12 (2005)

    MATH  MathSciNet  Google Scholar 

  • Kato, T.: Nonstationary flows of viscous and ideal fluids in \(\mathbb{R}^{3}\). J. Funct. Anal. 9, 296–305 (1972)

    Article  MATH  Google Scholar 

  • Kato, T.: Liapunov Functions and Monotonicity in the Euler and Navier–Stokes Equations, Lecture Notes in Mathematics, vol. 1450. Springer, Berlin (1990)

    Google Scholar 

  • Kozono, H., Taniuchi, Y.: Limiting case of the Sobolev inequality in BMO, with application to the Euler equations. Commun. Math. Phys. 214, 191–200 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Kiselev, A.: Nonlocal maximum principles for active scalars. Adv. Math. 227, 1806–1826 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Kiselev, A., Nazarov, F., Volberg, A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167, 445–453 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Larios, A., Lunasin, E., Titi, E.: Global well-posedness for the 2D Boussinesq system without heat diffusion and with either anisotropic viscosity or inviscid Voigt-\(\alpha \) regularization, arXiv:1010.5024v1 [math.AP] 25 Oct 2010.

  • Li, D., Rodrigo, J.: Blow up for the generalized surface quasi-geostrophic equation with supercritical dissipation. Commun. Math. Phys. 286, 111–124 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  • Miao, C., Wu, J., Zhang, Z.: Littlewood–Paley Theory and its Applications in Partial Differential Equations of Fluid Dynamics. Science Press, Beijing (2012). (in Chinese)

    Google Scholar 

  • Miao, C., Xue, L.: On the global well-posedness of a class of Boussinesq–Navier–Stokes systems. NoDEA Nonlinear Differ. Equ. Appl. 18, 707–735 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Miao, C., Xue, L.: On the regularity of a class of generalized quasi-geostrophic equations. J. Differ. Equ. 251, 2789–2821 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Miura, H.: Dissipative quasi-geostrophic equation for large initial data in the critical Sobolev space. Commun. Math. Phys. 267, 141–157 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Pak, H., Park, Y.: Existence of solution for the Euler equations in a critical Besov space \(B_{\infty,1}^{1}(\mathbb{R}^{d})\). Commun. Partial Differ. Equ. 29, 1149–1166 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1987)

    Book  MATH  Google Scholar 

  • Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36, 635–664 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  • Sideris, T., Thomases, B., Wang, D.: Long time behavior of solutions to the 3D compressible Euler equations with damping. Commun. Partial Differ. Equ. 28, 795–816 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Shu, E.W., Shu, C.-W.: Small-scale structures in Boussinesq convection. Phys. Fluids 6, 49–58 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001, reprint of the 1984 edition, MR 1846644 (2002j:76001).

  • Tran, C.V., Yu, X., Zhai, Z.: On global regularity of 2D generalized magnetohydrodynamics equations. J. Differ. Equ. 254, 4194–4216 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Triebel, H.: Theory of Function Spaces II. Birkhauser, Basel (1992)

    Book  MATH  Google Scholar 

  • Wu, J.: The quasi-geostrophic equation and its two regularizations. Commun. Partial Differ. Equ. 27, 1161–1181 (2002)

    Article  MATH  Google Scholar 

  • Wu, J.: The generalized MHD equations. J. Differ. Equ. 195, 284–312 (2003)

    Article  MATH  Google Scholar 

  • Wu, J.: Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces. SIAM J. Math. Anal. 36, 1014–1030 (2005)

    Article  MATH  Google Scholar 

  • Wu, J.: The two-dimensional quasi-geostrophic equation with critical or supercritical dissipation. Nonlinearity 18, 139–154 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Wu, J.: Regularity criteria for the generalized MHD equations. Commun. Partial Differ. Equ. 33, 285–306 (2008)

    Article  MATH  Google Scholar 

  • Wu, J.: Global regularity for a class of generalized magnetohydrodynamic equations. J. Math. Fluid Mech. 13, 295–305 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Xu, X.: Global regularity of solutions of 2D Boussinesq equations with fractional diffusion. Nonlinear Anal. 72, 677–681 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Xu, X., Ye, Z.: The lifespan of solutions to the inviscid 3D Boussinesq system. Appl. Math. Lett. 26, 854–859 (2013)

    Article  MathSciNet  Google Scholar 

  • Yamazaki, K.: On the global regularity of two-dimensional generalized magnetohydrodynamics system. J. Math. Anal. Appl. 416, 99–111 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  • Yamazaki, K.: Remarks on the global regularity of the two-dimensional magnetohydrodynamics system with zero dissipation. Nonlinear Anal. 94, 194–205 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  • Ye, Z.: Blow-up criterion of smooth solutions for the Boussinesq equations. Nonlinear Anal. 110, 97–103 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  • Ye, Z., Xu, X.: Global regularity of the two-dimensional incompressible generalized magnetohydrodynamics system. Nonlinear Anal. 100, 86–96 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang, Z., Liu, X.: On the blow-up criterion of smooth solutions to the 3D ideal MHD equations. Acta Math. Appl. Sinica E 20, 695–700 (2004)

    Article  MATH  Google Scholar 

  • Zhou, Y.: Regularity criteria for the generalized viscous MHD equations. Ann. Inst. H. Poincar Anal. Non Linaire 24, 491–505 (2007)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous referees and the editor for their constructive comments and helpful suggestions that have contributed to the final preparation of the paper. Wu was partially supported by NSF Grant DMS1209153 and by the AT& T Foundation at Oklahoma State University. Xu and Ye were partially supported by NSFC (No.11371059), BNSF (No.2112023), and the Fundamental Research Funds for the Central Universities of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuan Ye.

Additional information

Communicated by Peter Constantin.

Appendix: Local Existence and Uniqueness Theory to Damped MHD

Appendix: Local Existence and Uniqueness Theory to Damped MHD

For sake of completeness, we provide the local existence and uniqueness to the system (1.4) with initial data \((u_{0},\,b_{0})\in H^{s}(\mathbb {R}^{n})\times H^{s}(\mathbb {R}^{n})\) with \(s>1+\frac{n}{2}\). The local existence and uniqueness results to the system (1.1), (1.2), and (1.3) can be obtained by the method similar to Chapter 3 in Majda and Bertozzi (2002). More precisely, we state the following local result.

Proposition 6.1

Let initial datum \((u_{0},\,b_{0})\in H^{s}(\mathbb {R}^{n})\times H^{s}(\mathbb {R}^{n})\) with \(s>1+\frac{n}{2}\). Assume that \(\nabla \cdot u_{0}=0,\,\,\nabla \cdot b_{0}=0\). There exists a positive time \(T\) depending on \(\Vert u_{0}\Vert _{H^{s}}\) and \(\Vert b_{0}\Vert _{H^{s}}\) such that the system (1.4) admits a unique solution \((u, b)\) in \(C([0, T]; H^{s}(\mathbb {R}^{n})\times H^{s}(\mathbb {R}^{n}))\).

To prove Proposition 6.1, the main step is to modify the system (1.4) in order to easily produce a family of global smooth solutions. In order to do this, we may, for instance, make use of the Friedrichs method. Now we define the spectral cutoff as follows:

$$\begin{aligned} \widehat{\mathcal {J}_{N}f}(\xi )=\chi _{B(0,N)}(\xi )\widehat{f}(\xi ), \end{aligned}$$

where \(N>0, \,B(0,N)=\{\xi \in \mathbb {R}^{n}| \, |\xi |\le N\}\), \(\chi _{B(0,N)}\) is the characteristic function on \(B(0,N)\). Also we define

$$\begin{aligned} L^{2}_{N}\triangleq \left\{ f\in L^{2}(\mathbb {R}^{n})|\, \text{ supp } \,\widehat{f}\subset B(0,N)\right\} . \end{aligned}$$

It is easy for us to show the following properties (here the proof will be omitted) which will be used frequently later.

Lemma 6.2

Let \(N>0\) and for any \(f\in H^{s}(\mathbb {R}^{n})\), the followings hold true

$$\begin{aligned}&\Vert \mathcal {J}_{N}f\Vert _{L^{2}(\mathbb {R}^{n})}\le \Vert f\Vert _{L^{2}(\mathbb {R}^{n})},\quad \Vert \nabla ^{k}\mathcal {J}_{N}f\Vert _{H^{s}(\mathbb {R}^{n})}\le C N^{k}\Vert f\Vert _{H^{s}(\mathbb {R}^{n})},\end{aligned}$$
(6.1)
$$\begin{aligned}&\Vert \mathcal {J}_{N}f-f\Vert _{H^{s}(\mathbb {R}^{n})}\rightarrow 0, \,as\,\, N\rightarrow \infty ,\end{aligned}$$
(6.2)
$$\begin{aligned}&\Vert \nabla ^{k}\mathcal {J}_{N}f\Vert _{L^{\infty }(\mathbb {R}^{n})}\le C N^{k+\frac{n}{2}}\Vert f\Vert _{L^{2}(\mathbb {R}^{n})},\end{aligned}$$
(6.3)
$$\begin{aligned}&\int _{\mathbb {R}^{n}}\mathcal {J}_{N}f g \mathrm{d}x=\int _{\mathbb {R}^{n}}f \mathcal {J}_{N} g \mathrm{d}x,\quad \int \mathcal {P}f\cdot g\,\mathrm{d}x=\int f\cdot \mathcal {P}g\,\mathrm{d}x,\end{aligned}$$
(6.4)
$$\begin{aligned}&\Vert \mathcal {J}_{N}f\Vert _{H^{s}(\mathbb {R}^{n})}\le C N^{s}\Vert f\Vert _{L^{2}(\mathbb {R}^{n})},\quad \Vert \mathcal {P} f\Vert _{H^{s}(\mathbb {R}^{n})}\le \Vert f\Vert _{H^{s}(\mathbb {R}^{n})} \end{aligned}$$
(6.5)

where \(\mathcal {P}\) denotes the Leray projection onto divergence-free vector fields.

Proof of Proposition 6.1

The first step is to establish a smooth solution \((u^{N},\,b^{N})\) in space \(L^{2}_{N}\) satisfying

$$\begin{aligned} \left\{ \begin{array}{l} \partial _{t}u^{N}+\mathcal {P}\mathcal {J}_{N}((\mathcal {P}\mathcal {J}_{N}u^{N}\cdot \nabla ) \mathcal {P}\mathcal {J}_{N}u^{N})+\kappa \mathcal {P}\mathcal {J}_{N}u^{N}= \mathcal {P}\mathcal {J}_{N}(( \mathcal {J}_{N}b^{N}\cdot \nabla ) \mathcal {J}_{N}b^{N}),\\ \partial _{t}b^{N}+\mathcal {J}_{N}((\mathcal {P}\mathcal {J}_{N}u^{N}\cdot \nabla )\mathcal {J}_{N}b^{N})+\lambda \mathcal {J}_{N} b^{N}=\mathcal {J}_{N}((\mathcal {J}_{N}b^{N}\cdot \nabla )\mathcal {P}\mathcal {J}_{N}u^{N}),\\ \nabla \cdot u^{N}=0,\,\nabla \cdot b^{N}=0,\\ u^{N}(x,0)=\mathcal {J}_{N}u_{0}(x),\,b^{N}(x,0)=\mathcal {J}_{N}b_{0}(x). \end{array} \right. \end{aligned}$$
(6.6)

Claim 1: For any fixed \(N>0\), approximate system (6.6) has a unique global (in time) smooth solution \((u^{N},\,b^{N})\) satisfying

$$\begin{aligned} (u^{N},\,b^{N})\in C([0,\,\infty );\,H^{\bar{s}}(\mathbb {R}^{n})),\quad \text{ for } \text{ any }\,\,\bar{s}\ge 0. \end{aligned}$$

Now we give the outline to prove the above claim. First, applying the \(L^{2}\) estimate to (6.6) tells us that for any \(0\le t\le T\) with any \(T\ge 0\)

$$\begin{aligned}&\Vert u^{N}(., t)\Vert _{L^{2}}^{2}+\Vert b^{N}(., t)\Vert _{L^{2}}^{2}+2\int _{0}^{T}{(\kappa \Vert \mathcal {J}_{N}u^{N}(., s)\Vert _{L^{2}}^{2}+\lambda \Vert \mathcal {J}_{N}b^{N}(., s)\Vert _{L^{2}}^{2})\,\mathrm{d}t}\nonumber \\&\qquad \le \Vert u_{0}\Vert _{L^{2}}^{2}+\Vert b_{0}\Vert _{L^{2}}^{2}. \end{aligned}$$
(6.7)

We write

$$\begin{aligned}&\frac{\mathrm{d}}{\mathrm{d}t}\left( \begin{array}{ll} u^{N}\\ b^{N} \end{array} \right) \\&\quad =\left[ \begin{array}{l} -\mathcal {P}\mathcal {J}_{N}((\mathcal {P}\mathcal {J}_{N}u^{N}\cdot \nabla ) \mathcal {P}\mathcal {J}_{N}u^{N})-\kappa \mathcal {P}\mathcal {J}_{N}u^{N}+ \mathcal {P}\mathcal {J}_{N}(( \mathcal {J}_{N}b^{N}\cdot \nabla ) \mathcal {J}_{N}b^{N})\\ -\mathcal {J}_{N}((\mathcal {P}\mathcal {J}_{N}u^{N}\cdot \nabla )\mathcal {J}_{N}b^{N})-\lambda \mathcal {J}_{N} b^{N}+\mathcal {J}_{N}((\mathcal {J}_{N}b^{N}\cdot \nabla )\mathcal {P}\mathcal {J}_{N}u^{N}) \end{array} \right] . \end{aligned}$$

For convenience of notation, we denote the right-hand side of the above differential equations as \(F(u^{N},b^{N})\).

It is not difficult to show that \(F\) satisfies the local Lipschitz condition for any fixed \(N\). That is, the difference \(\Vert F(u^{N},b^{N})-F(\widetilde{u}^{N},\widetilde{b}^{N})\Vert _{H^{\bar{s}}}\) satisfies

$$\begin{aligned} \Vert F(u^{N},b^{N})-F(\widetilde{u}^{N},\widetilde{b}^{N})\Vert _{H^{\bar{s}}}\le \widetilde{C}\Vert (u^{N}, b^{N} )-(\widetilde{u}^{N}, \widetilde{b}^{N})\Vert _{H^{\bar{s}}}, \end{aligned}$$

where \(\widetilde{C}=C\max (N^{\bar{s}+1+\frac{n}{2}},\kappa , \lambda , \Vert u_{0}\Vert _{L^{2}}+ \Vert b_{0}\Vert _{L^{2}}).\)

Taking advantage of the Cauchy-Lipschitz theorem (Picard’s Theorem, see Majda and Bertozzi 2002), we can find that for any fixed \(N\), there exists the unique solution \((u^{N},b^{N})\) in in \(C([0, T_{N}); H^{\bar{s}}(\mathbb {R}^{n})\times H^{\bar{s}}(\mathbb {R}^{n}))\) with \(T_{N}=T(N, u_{0}, b_{0})\). In fact, it is not hard to extend the local solution to the global solution based on the above estimates. In fact, we just set \(\widetilde{u}^{N}=\widetilde{b}^{N}=0\), then we can obtain immediately that

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}(\Vert u^{N}\Vert _{H^{\bar{s}}}\!+\!\Vert b^{N}\Vert _{H^{\bar{s}}})\!\le C\max (N^{\bar{s}\!+\!1\!+\!\frac{n}{2}},\!\kappa ,\! \lambda , \Vert u_{0}\Vert _{L^{2}}\!+\! \Vert b_{0}\Vert _{L^{2}})(\Vert u^{N}\Vert _{H^{\bar{s}}}\!+\!\Vert b^{N}\Vert _{H^{\bar{s}}}). \end{aligned}$$

Gronwall inequality yields for any \(T\ge 0\)

$$\begin{aligned} \Vert u^{N}(.,T)\Vert _{H^{\bar{s}}}+\Vert b^{N}(.,T)\Vert _{H^{\bar{s}}}\le e^{C\max (N^{\bar{s}+1+\frac{n}{2}},\kappa , \lambda , \Vert u_{0}\Vert _{L^{2}}+ \Vert b_{0}\Vert _{L^{2}})T}. \end{aligned}$$

Thus, we have proved Claim 1.

Due to \(\mathcal {J}_{N}^{2}=\mathcal {J}_{N},\,\mathcal {P}^{2}=\mathcal {P}\), and \(\mathcal {P}\mathcal {J}_{N}=\mathcal {J}_{N}\mathcal {P}\), we can discover that \((\mathcal {P}u^{N},\,b^{N})\) and \((\mathcal {J}_{N}u^{N},\,\mathcal {J}_{N}b^{N})\) are also solutions to approximate system (6.6) with the same initial datum. Thanks to the uniqueness, we thus find

$$\begin{aligned} \mathcal {P}u^{N}=u^{N},\,\,\mathcal {J}_{N}u^{N}=u^{N} \,\,and\,\, \mathcal {J}_{N}b^{N}=b^{N}. \end{aligned}$$

Consequently, approximate system (6.6) reduces to

$$\begin{aligned} \left\{ \begin{array}{l} \partial _{t}u^{N}+\mathcal {P}\mathcal {J}_{N}((u^{N}\cdot \nabla ) u^{N})+\kappa u^{N}=\mathcal {P}\mathcal {J}_{N}(b^{N}\cdot \nabla )b^{N},\\ \partial _{t}b^{N}+\mathcal {J}_{N}((u^{N}\cdot \nabla )b^{N})+\lambda b^{N}=\mathcal {J}_{N}((b^{N}\cdot \nabla )u^{N}),\\ \nabla \cdot u^{N}=0,\,\nabla \cdot b^{N}=0,\\ u^{N}(x,0)=\mathcal {J}_{N}u_{0}(x),\,b^{N}(x,0)=\mathcal {J}_{N}b_{0}(x). \end{array} \right. \end{aligned}$$
(6.8)

The same argument to that used in obtaining (5.8) together with the fact (6.4), we can also get the nonhomogeneous \(H^{s}\) bound as follows:

$$\begin{aligned}&\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}(\Vert u^{N}(t)\Vert _{H^{s}}^{2} +\Vert b^{N}(t)\Vert _{H^{s}}^{2})+\kappa \Vert u^{N}\Vert _{H^{s}}^{2}+\lambda \Vert b^{N} \Vert _{H^{s}}^{2}\nonumber \\&\quad \le \,C(\Vert \nabla u^{N}\Vert _{L^{\infty }}+\Vert \nabla b^{N}\Vert _{L^{\infty }}) (\Vert u^{N}(t)\Vert _{H^{s}}^{2}+\Vert b^{N}\Vert _{H^{s}}^{2})\nonumber \\&\quad \le \,C(\Vert u^{N}\Vert _{H^{s}}+\Vert b^{N}\Vert _{H^{s}}) (\Vert u^{N}(t)\Vert _{H^{s}}^{2}+\Vert b^{N}\Vert _{H^{s}}^{2}). \end{aligned}$$
(6.9)

For the convenience of notation, we also denote

$$\begin{aligned} X(t)=\sqrt{\Vert u^{N}(t)\Vert _{H^{s}}^{2}+\Vert b^{N}\Vert _{H^{s}}^{2}}. \end{aligned}$$

Consequently, (6.9) becomes

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}X(t)+\min \{\kappa ,\,\lambda \}X(t)\le CX(t)^{2}. \end{aligned}$$

Standard calculations show that for all \(N\)

$$\begin{aligned} \sup _{0\le t\le T}(\sqrt{\Vert u^{N}(t)\Vert _{H^{s}}^{2}+\Vert b^{N}\Vert _{H^{s}}^{2}})\le \frac{\sqrt{\Vert u_{0}\Vert _{H^{s}}^{2}+\Vert b_{0}\Vert _{H^{s}}^{2}}}{1-CT\sqrt{\Vert u_{0}\Vert _{H^{s}}^{2}+\Vert b_{0}\Vert _{H^{s}}^{2}}}. \end{aligned}$$
(6.10)

Thus, the family (\(u^{N},\,b^{N}\)) is uniformly bounded in \(C([0, T ]; H^{s})\) with \(s>1+\frac{n}{2}\), provided that \(T<\Big (C(\Vert u_{0}\Vert _{{H}^{s}}^{2}+\Vert b_{0}\Vert _{H^{s}}^{2}) \Big )^{-\frac{1}{2}}\).

Therefore, one can conclude from (6.7) and (6.10) that

  • \((u^{N},\,b^{N})_{N\in \mathbb {N}}\) is bounded in \(L^{\infty }([0, T]; L^{2}(\mathbb {R}^{n}))\),

  • \((u^{N},\,b^{N})_{N\in \mathbb {N}}\) is bounded in \(L^{\infty }([0, T]; H^{s}(\mathbb {R}^{n}))\) for some \(s>1+\frac{n}{2}\).

This is enough to pass to the limit (up to extraction) in (6.8). In fact, we have

$$\begin{aligned}&\Vert \mathcal {P}\mathcal {J}_{N}((u^{N}u^{N})\Vert _{L^{2}}\le C \Vert u^{N}\Vert _{L^{4}}^{2}\le C,\quad \Vert \mathcal {P}\mathcal {J}_{N}((b^{N}b^{N})\Vert _{L^{2}}\le C \Vert b^{N}\Vert _{L^{4}}^{2}\le C,\\&\Vert \mathcal {P}\mathcal {J}_{N}((u^{N}b^{N})\Vert _{L^{2}}\le C \Vert u^{N}\Vert _{L^{4}}\Vert b^{N}\Vert _{L^{4}}\le C, \end{aligned}$$

where we have used the following interpolation:

$$\begin{aligned} \Vert f\Vert _{L^{4}}\le C\Vert f\Vert _{L^{2}}^{\frac{4s-n}{4s}}\Vert f\Vert _{H^{s}} ^{\frac{n}{4s}}, \quad s\ge \frac{n}{4}. \end{aligned}$$

Note that

$$\begin{aligned}&\partial _{t}u^{N}=-\mathcal {P}\mathcal {J}_{N}((u^{N}\cdot \nabla ) u^{N})-\kappa u^{N}+\mathcal {P}\mathcal {J}_{N}(b^{N}\cdot \nabla )b^{N},\\&\partial _{t}b^{N}=-\mathcal {J}_{N}((u^{N}\cdot \nabla )b^{N})-\lambda b^{N}+\mathcal {J}_{N}((b^{N}\cdot \nabla )u^{N}). \end{aligned}$$

Thus, it is not hard to see that

$$\begin{aligned} \partial _{t}u^{N},\,\,\partial _{t}b^{N}\in L_{t}^{\infty } ([0, T]);\,H_{x}^{-\sigma }(\mathbb {R}^{n})\quad \text{ for } \text{ any } \,\, \sigma \ge 1. \end{aligned}$$

Consequently, we assume that

$$\begin{aligned} \partial _{t}u^{N},\,\,\partial _{t}b^{N}\in L_{Loc}^{4}([0, T]);\,H_{x}^{-2}(\mathbb {R}^{n}). \end{aligned}$$

Since the embedding \(L^{2}\hookrightarrow H^{-2}\) is locally compact, the well-known Aubin-Lions argument (see e.g., Constantin and Foias 1988; Temam 2002) allows us to conclude that, up to extraction, subsequence \((u^{N},\,b^{N})_{N\in \mathbb {N}}\) satisfies

$$\begin{aligned} \Vert u^{N}-u^{N'}\Vert _{L^{2}},\quad \Vert b^{N}-b^{N'}\Vert _{L^{2}}\rightarrow 0,\quad as\quad N,\,\,N'\rightarrow \infty . \end{aligned}$$

By the interpolation (\(\Vert u\Vert _{H^{s'}}\le C \Vert u\Vert _{L^{2}}^{1-\frac{s'}{s}}\Vert u\Vert _{H^{s}}^{\frac{s'}{s}}\) for any \(s'<s\)), we can show that

$$\begin{aligned} \Vert u^{N}-u^{N'}\Vert _{H^{s'}},\quad \Vert b^{N}-b^{N'}\Vert _{H^{s'}}\rightarrow 0,\quad as\quad N,\,\,N'\rightarrow \infty ,\,\, \text{ for } \text{ any }\,\,s'<s, \end{aligned}$$

which imply that we have strong convergence limit \((u, b)\) in \(C([0, T]; H^{s'})\) (see Claim 2 below for detailed proof) with any \(s'<s\). Therefore, it is enough for us to show that up to extraction, sequence \((u^{N},\,b^{N})_{N\in \mathbb {N}}\) has a limit \((u,\,b)\) satisfying

$$\begin{aligned} \left\{ \begin{array}{l} \partial _{t}u+\mathcal {P}((u\cdot \nabla ) u)+\kappa u=\mathcal {P}((b\cdot \nabla )b),\\ \partial _{t}b+(u\cdot \nabla )b+\lambda b=(b\cdot \nabla )u,\\ \nabla \cdot u=0,\,\nabla \cdot b=0,\\ u(x,0)=u_{0}(x),\,b(x,0)=b_{0}(x). \end{array} \right. \end{aligned}$$
(6.11)

Claim 2: \((u, b)\in L^{\infty }([0, T]; H^{s}(\mathbb {R}^{n}) \times H^{s}(\mathbb {R}^{n}))\) and \((u, b)\in \)Lip\( ([0, T]; H^{s-1}(\mathbb {R}^{n}) \times H^{s-1}(\mathbb {R}^{n}))\). Moreover, \((u, b)\in C([0, T]; H^{s}(\mathbb {R}^{n}) \times H^{s}(\mathbb {R}^{n}))\).

From the above argument, it is easy to show that

$$\begin{aligned}&\sup _{0\le t\le T}\Vert (u^{N},b^{N})\Vert _{H^{s}} \le M_{1}<\infty ,\end{aligned}$$
(6.12)
$$\begin{aligned}&\sup _{0\le t\le T} \Vert (\partial _{t}u^{N},\partial _{t}b^{N})\Vert _{H^{s-1}} \le M_{2}<\infty . \end{aligned}$$
(6.13)

Therefore, \((u^{N},b^{N})\) is uniformly bounded in the Hilbert space \(L^{2}([0, T]; H^{s}(\mathbb {R}^{n}) \times H^{s}(\mathbb {R}^{n}))\) such that there exists a subsequence that converges weakly to

$$\begin{aligned} (u,b)\in L^{2}([0, T]; H^{s}(\mathbb {R}^{n}) \times H^{s}(\mathbb {R}^{n})). \end{aligned}$$
(6.14)

For the fixed \(t\in [0, T]\), the sequence \((u^{N}(., t),b^{N}(., t))\) is uniformly bounded in \(H^{s}(\mathbb {R}^{n}) \times H^{s}(\mathbb {R}^{n})\), so that it also has a subsequence that converges weakly to \((u(t), b(t))\in H^{s}(\mathbb {R}^{n}) \times H^{s}(\mathbb {R}^{n})\). Consequently, \(\Vert (u, b)\Vert _{H^{s}}\) is bounded for any \(t\in [0, T]\) which together with (6.14) implies that \((u, b)\in L^{\infty }([0, T]; H^{s}(\mathbb {R}^{n}) \times H^{s}(\mathbb {R}^{n}))\). Applying the same arguments and (6.13), we can show that \((u, b)\in \text{ Lip } ([0, T]; H^{s-1}(\mathbb {R}^{n}) \times H^{s-1}(\mathbb {R}^{n}))\).

In fact, we can get from the local existence theorem that

$$\begin{aligned} (u^{N}, b^{N})\in C^{1}([0, T]; H^{s}(\mathbb {R}^{n})\times H^{s}(\mathbb {R}^{n})), \end{aligned}$$
(6.15)

and

$$\begin{aligned} (u^{N}, b^{N})\rightarrow (u, b) \in L^{\infty } ([0, T]; H^{s'}(\mathbb {R}^{n})\times H^{s'}(\mathbb {R}^{n}))\quad \text{ for } \text{ any }\,\, s'\le s. \end{aligned}$$
(6.16)

Now we will show that \((u,b)\) is strongly continuous in \(H^{s}(\mathbb {R}^{n})\times H^{s}(\mathbb {R}^{n})\) in time. It suffices to consider \(u\in C([0, T]; H^{s}(\mathbb {R}^{n})\) as the same fashion can be applied to \(b\) to obtain the desired result.

By the equivalent norm, it yields

$$\begin{aligned} \Vert u(t_{1})-u(t_{2})\Vert _{H^{s}}=\Big \{\Big (\sum _{j<N}+ \sum _{j\ge N}\Big ) (2^{js}\Vert \Delta _{j}u(t_{1})-\Delta _{j}u(t_{2})\Vert _{L^{2}})^{2} \Big \}^{\frac{1}{2}}. \end{aligned}$$
(6.17)

Let \(\varepsilon >0\) be arbitrarily small. Due to \(u\in L^{\infty }([0, T]; H^{s}(\mathbb {R}^{n}))\), there exists a integer \(N>0\) such that

$$\begin{aligned} \Big \{\sum _{j\ge N} (2^{js}\Vert \Delta _{j}u(t_{1})-\Delta _{j}u(t_{2})\Vert _{L^{2}})^{2} \Big \}^{\frac{1}{2}}<\frac{\varepsilon }{2}. \end{aligned}$$
(6.18)

Recalling the system (6.11)\(_{1}\), we obtain

$$\begin{aligned} \Delta _{j}u(t_{1})-\Delta _{j}u(t_{2})&= \int _{t_{1}}^{t_{2}}{\frac{\mathrm{d}}{\mathrm{d}\tau } \Delta _{j}u(\tau )\,\mathrm{d}\tau }\nonumber \\&= \int _{t_{1}}^{t_{2}}{ \Delta _{j}\mathcal {P}[(b\cdot \nabla ) b-(u\cdot \nabla ) u-\kappa u](\tau )\,\mathrm{d}\tau }. \end{aligned}$$
(6.19)

Therefore, we can get

$$\begin{aligned}&\sum _{j<N} 2^{2js}\Vert \Delta _{j}u(t_{1})-\Delta _{j}u(t_{2})\Vert _{L^{2}}^{2}\nonumber \\&\quad =\sum _{j<N} 2^{2js}\Big (\Big \Vert \int _{t_{1}}^{t_{2}}{ \Delta _{j}\mathcal {P}[(b\cdot \nabla ) b-(u\cdot \nabla ) u-\kappa u](\tau )\,\mathrm{d}\tau }\Big \Vert _{L^{2}}\Big )^{2}\nonumber \\&\quad \le \sum _{j<N} 2^{2js}\Big (\int _{t_{1}}^{t_{2}}{ \Vert \Delta _{j}[(b\cdot \nabla ) b-(u\cdot \nabla ) u-\kappa u]\Vert _{L^{2}}(\tau )\,\mathrm{d}\tau }\Big )^{2} \nonumber \\&\quad \le \sum _{j<N} 2^{2js}\Big (\int _{t_{1}}^{t_{2}}{ [\Vert \Delta _{j}(b\cdot \nabla ) b\Vert _{L^{2}}+ \Vert (u\cdot \nabla ) u\Vert _{L^{2}}+\kappa \Vert u\Vert _{L^{2}}](\tau )\,\mathrm{d}\tau }\Big )^{2} \nonumber \\&\quad =\sum _{j<N} 2^{2j}\!\Big (\!\int _{t_{1}}^{t_{2}}{ [2^{j(s\!-\!1)}\Vert \!\Delta _{j}(b\!\cdot \nabla ) b\Vert _{L^{2}}\!+\! 2^{j(s\!-\!1)}\Vert (u\!\cdot \!\nabla ) u\Vert _{L^{2}}\!+\!\kappa 2^{j(s\!-\!1)}\Vert u\Vert _{L^{2}}]\!(\tau )\,\mathrm{d}\!\tau }\!\Big )^{2}\nonumber \\&\quad \le C\sum _{j<N} 2^{2j}\!\Big (\Vert (b\cdot \nabla ) b\Vert _{H^{s\!-\!1}}^{2}|t_{1}\!-\!t_{2}|\!+\!\Vert (u\cdot \nabla ) u\Vert _{H^{s-1}}^{2}|t_{1}-t_{2}|\!+\!\kappa \Vert u\Vert _{H^{s-1}}^{2}|t_{1}\!-\!t_{2}|\Big )\nonumber \\&\quad \le C\sum _{j<N} 2^{2j}|t_{1}-t_{2}|\Big (\Vert b\Vert _{L^{\infty }}^{2}\Vert \nabla b\Vert _{H^{s-1}}^{2}+\Vert \nabla b\Vert _{L^{\infty }}^{2}\Vert b\Vert _{H^{s-1}}^{2}+ \Vert u\Vert _{L^{\infty }}^{2}\Vert \nabla u\Vert _{H^{s-1}}^{2}\nonumber \\&\qquad +\;\Vert \nabla u\Vert _{L^{\infty }}^{2}\Vert u\Vert _{H^{s-1}}^{2} +\kappa \Vert u\Vert _{H^{s-1}}^{2}\Big )\nonumber \\&\quad \le C 2^{2N}|t_{1}-t_{2}|\Big (\Vert b\Vert _{H^{s}}^{2}\Vert b\Vert _{H^{s}}^{2}+\Vert u\Vert _{H^{s}}^{2}\Vert u\Vert _{H^{s}}^{2} +\kappa \Vert u\Vert _{H^{s}}^{2}\Big ), \end{aligned}$$
(6.20)

where the Sobolev imbeddings \(H^{s}(\mathbb {R}^{n})\hookrightarrow H^{s-1}(\mathbb {R}^{n})\) and \(H^{s-1}(\mathbb {R}^{n})\hookrightarrow L^{\infty }(\mathbb {R}^{n})\) with \(s>1+\frac{n}{2}\) are used several times in the last inequality.

Thus, the following holds true

$$\begin{aligned} \Big \{\sum _{j< N} (2^{js}\Vert \Delta _{j}u(t_{1})-\Delta _{j}u(t_{2})\Vert _{L^{2}})^{2} \Big \}^{\frac{1}{2}}<\frac{\varepsilon }{2} \end{aligned}$$
(6.21)

provided \(|t_{1}-t_{2}|\) small enough.

Combining (6.18) with (6.21) implies \(u\in C([0, T]; H^{s}(\mathbb {R}^{n})\). Consequently, the Claim 2 holds true. The uniqueness can be easily obtained as the velocity field and magnetic field are both in Lipschitz space. Therefore, the proof of Proposition 6.1 is completed. \(\square \)

Now we will state the following fundamental commutator estimates which have been used repeatedly in the proofs of Lemmas 2.6 and 2.7.

Lemma 6.3

(See Bahour et al. 2011) Let \( \theta \) be a \(C^{1}\) function on \(\mathbb {R}^{n}\) such that \(|x|\check{\theta }(x)\in L^{1}\). There exists a constant C such that for any Lipschitz function \(a\) with gradient in \(L^{p}\) and any function \(b\) in \(L^{q}\), we have, for any positive \(\lambda \),

$$\begin{aligned} \Vert [\theta (\lambda ^{-1}D), a]b\Vert _{L^{r}}\le C\lambda ^{-1}\Vert \nabla a\Vert _{L^{p}}\Vert b\Vert _{L^{q}} \, \, with \, \, \frac{1}{p}+\frac{1}{q}=\frac{1}{r},\,\,(p,q)\in [1,\infty ]^{2}. \end{aligned}$$

With the aid of above Lemma, we will prove the commutator (2.3) and Lemma 2.7.

Proof of Commutator 2.3

The proof of (2.2) follows the general line of presentation in Bahour et al. (2011), Miao et al. (2012) and is standard; thus, we omit it. Now our efforts focus on the commutator (2.3). Using the notion of para-products, we write

$$\begin{aligned}{}[{\Delta }_{j}, u\cdot \nabla ]\omega =K_{1}+K_{2}+K_{3} \end{aligned}$$

where

$$\begin{aligned} K_{1}=&\sum _{|k-j|\le 2}[{\Delta }_{j}, {S}_{k-1}u\cdot \nabla ]{\Delta }_{k}\omega ,\quad K_{2}=\sum _{|k-j|\le 2}[{\Delta }_{j}, {\Delta }_{k}u\cdot \nabla ]{S}_{k-1}\omega ,\\ K_{3}=&\sum _{k+1\ge j}[{\Delta }_{j}, {\Delta }_{k}u\cdot \nabla ]\widetilde{{\Delta }_{k}}\omega \quad \text{ and } \quad \widetilde{{\Delta }_{k}}={\Delta }_{k-1}+{\Delta }_{k}+{\Delta }_{k+1}. \end{aligned}$$

By using Bernstein inequality and Lemma 6.3 above, we arrive at

$$\begin{aligned} \Vert K_{1}\Vert _{L^{p}}&\le C \sum _{i=1}^{n}\sum _{|k-j|\le 2}2^{-j}\Vert \nabla {S}_{k-1}{u_{i}}\Vert _{L^{\infty }} \Vert \partial _{i} {\Delta }_{k}\omega \Vert _{L^{p}}\\&\le C\sum _{|k-j|\le 2}2^{k-j}\Vert \nabla {S}_{k-1}{u}\Vert _{L^{\infty }} \Vert {\Delta }_{k}\omega \Vert _{L^{p}}\\&\le C\Vert \nabla {u}\Vert _{L^{\infty }}\sum _{|k-j|\le 2}2^{k-j} \Vert {\Delta }_{k}\omega \Vert _{L^{p}}. \end{aligned}$$

We can bound \(K_{2}\) (\(k\ge 1\) otherwise \(K_{2}\equiv 0\)) similar to \(K_{1}\) as follows:

$$\begin{aligned} \Vert K_{2}\Vert _{L^{p}}&\le C \sum _{i=1}^{n}\sum _{|k-j|\le 2}2^{-j}\Vert \nabla { {\Delta }_{k}u_{i}}\Vert _{L^{p}} \Vert \partial _{i} {S}_{k-1}\omega \Vert _{L^{\infty }}\\&\le C\sum _{|k-j|\le 2}2^{-j}\Vert \nabla { {\Delta }_{k}u}\Vert _{L^{p}} 2^{k}\Vert \ {S}_{k-1}\omega \Vert _{L^{\infty }}\\&\le C\sum _{|k-j|\le 2}2^{-j}\Vert {{\Delta }_{k}\nabla u}\Vert _{L^{p}} 2^{k}\Vert {S}_{k-1}\omega \Vert _{L^{\infty }}\\&\le C\sum _{|k-j|\le 2}2^{k-j}\Vert { {\Delta }_{k}\nabla u}\Vert _{L^{p}} \Vert \omega \Vert _{L^{\infty }}\\&\le C\Vert \nabla u\Vert _{L^{\infty }}\sum _{|k-j|\le 2}2^{k-j}\Vert { {\Delta }_{k}\omega }\Vert _{L^{p}}, \end{aligned}$$

where \(\Vert \omega \Vert _{L^{\infty }}\le C\Vert \nabla u\Vert _{L^{\infty }}\) and \(\Vert { {\Delta }_{k}\nabla u}\Vert _{L^{p}}\le C \Vert { {\Delta }_{k}\omega }\Vert _{L^{p}}\) for any \(k\ge 0\) are applied (in fact, \(k\ge 0\) is only needed when \(p=1\) or \(p=\infty \)).

We decompose \(K_{3}\) into the following two parts:

$$\begin{aligned} K_{3}=\sum _{ j-1\le k\le j}[{\Delta }_{j}, {\Delta }_{k}u\cdot \nabla ]\widetilde{{\Delta }_{k}}\omega +\sum _{k> j}[{\Delta }_{j}, {\Delta }_{k}u\cdot \nabla ]\widetilde{{\Delta }_{k}}\omega \triangleq K_{3}^{1}+K_{3}^{2}. \end{aligned}$$

For \(K_{3}^{1}\), making use of Lemma 6.3 above, we have

$$\begin{aligned} \Vert K_{3}^{1}\Vert _{L^{p}}&\le C \sum _{ j-1\le k\le j}\Vert [{\Delta }_{j}, {\Delta }_{k}u\cdot \nabla ]\widetilde{{\Delta }_{k}}\omega \Vert _{L^{p}}\\&\le C \sum _{ j-1\le k\le j}2^{-j}\Vert \nabla {\Delta }_{k}u\Vert _{L^{\infty }} \Vert \nabla \widetilde{{\Delta }_{k}}\omega \Vert _{L^{p}}\\&\le C\Vert \nabla u\Vert _{L^{\infty }}\sum _{ j-1\le k\le j}2^{k-j} \Vert \widetilde{{\Delta }_{k}}\omega \Vert _{L^{p}}\\&\le C\Vert \nabla u\Vert _{L^{\infty }}\sum _{ j-1\le k\le j}2^{k-j} \Vert {{\Delta }_{k}}\omega \Vert _{L^{p}}. \end{aligned}$$

For the term \(K_{3}^{2}\), we do not need to use the structure of the commutator. Thanks to divergence-free condition, we can rewrite \(K_{3}^{2}\) as follows:

$$\begin{aligned} K_{3}^{2}=\sum _{k> j}{\Delta }_{j}\partial _{l} ({\Delta }_{k}u_{l}\widetilde{{\Delta }_{k}}\omega )+\sum _{|k-j|\le 3, k>j} {\Delta }_{k}u_{l}{\Delta }_{j}\partial _{l}\widetilde{{\Delta }_{k}}\omega . \end{aligned}$$

By using Bernstein inequality, we can obtain (bearing in mind \(k>j\Rightarrow k\ge 0\))

$$\begin{aligned} \Vert K_{3}^{2}\Vert _{L^{p}}\le C&\sum _{k> j}\Vert {\Delta }_{j}\partial _{l} ({\Delta }_{k}u_{l}\widetilde{{\Delta }_{k}}\omega ) \Vert _{L^{p}}+C\sum _{|k-j|\le 3, k>j}\Vert {\Delta }_{k}u_{l}{\Delta }_{j}\partial _{l}\widetilde{{\Delta }_{k}}\omega \Vert _{L^{p}}\\ \!\le \! C&\!\sum _{k> j}2^{j-k}\Vert \!\nabla {\Delta }_{k}u\Vert _{L^{\infty }} \Vert \widetilde{{\Delta }_{k}}\omega \Vert _{L^{p}}\!+\! C\sum _{|k-j|\le 3, k>j}2^{j\!-\!k}\Vert \nabla {\Delta }_{k}u\Vert _{L^{\infty }} \Vert \widetilde{{\Delta }_{k}}\omega \Vert _{L^{p}}\\ \le C&\Vert \nabla u\Vert _{L^{\infty }}\sum _{k> j}2^{j-k} \Vert {{\Delta }_{k}}\omega \Vert _{L^{p}}. \end{aligned}$$

Plugging all the obtained estimates together, we have

$$\begin{aligned} \Vert [{\Delta }_{j}, u\!\cdot \!\nabla ]\omega \Vert _{L^{p}}&\le C\Vert \!\nabla {u}\Vert _{L^{\infty }}\!\!\sum _{|k\!-j|\!\le 2}2^{k\!-j} \Vert {\!\Delta }_{k}\!\omega \Vert _{L^{p}} +\;C\Vert \nabla u\Vert _{L^{\infty }}\!\!\sum _{ j-1\!\le k\le j}2^{k\!-j}\Vert {{\Delta }_{k}}\omega \Vert _{L^{p}}\\&+\,C \Vert \nabla u\Vert _{L^{\infty }}\sum _{k> j}2^{j-k} \Vert {{\Delta }_{k}}\omega \Vert _{L^{p}}. \end{aligned}$$

Multiplying above inequality by \(2^{js}\), taking \(l_{j}^{r}\) then applying the discrete Young inequality, we can show that

$$\begin{aligned} \big \Vert 2^{js}\Vert [{\Delta }_{j}, u\cdot \nabla ]w\Vert _{L^{p}}\big \Vert _{l_{j}^{r}} \le&\; C \Vert \nabla u\Vert _{L^{\infty }}\big \Vert \sum _{|k-j|\le 2}2^{(j-k)(s-1)}2^{ks}\Vert {\Delta }_{k}\omega \Vert _{L^{p}}\big \Vert _{l_{j}^{r}}\\&+C \Vert \nabla u\Vert _{L^{\infty }}\big \Vert \sum _{ j-1\le k\le j}2^{(j-k)(s-1)}2^{ks}\Vert {\Delta }_{k}\omega \Vert _{L^{p}}\big \Vert _{l_{j}^{r}}\\&+\,C \Vert \nabla u\Vert _{L^{\infty }}\big \Vert \sum _{k> j}2^{(j-k)(s+1)}2^{ks} \Vert {{\Delta }_{k}}\omega \Vert _{L^{p}}\big \Vert _{l_{j}^{r}}\\ \le&\; C \Vert \nabla u\Vert _{L^{\infty }}\Vert \omega \Vert _{{B}_{p,r}^{s}}, \end{aligned}$$

where \(s+1>0\) can guarantee that

$$\begin{aligned} \big \Vert \sum _{k> j}2^{(j-k)(s+1)}2^{ks} \Vert {{\Delta }_{k}}\omega \Vert _{L^{p}}\big \Vert _{l_{j}^{r}}\le C\Vert \omega \Vert _{{B}_{p,r}^{s}}. \end{aligned}$$

Therefore, the commutator (2.3) is then proved. \(\square \)

Proof of Lemma 2.7

Using the notion of para-products, we write

$$\begin{aligned}{}[\dot{\Delta }_{j}, u\cdot \nabla ]v=J_{1}+J_{2}+J_{3} \end{aligned}$$

where

$$\begin{aligned} J_{1}=&\sum _{|k-j|\le 2}[\dot{\Delta }_{j}, \dot{S}_{k-1}u\cdot \nabla ]\dot{\Delta }_{k}v,\quad J_{2}=\sum _{|k-j|\le 2}[\dot{\Delta }_{j}, \dot{\Delta }_{k}u\cdot \nabla ]\dot{S}_{k-1}v ,\\ J_{3}=&\sum _{k+1\ge j}[\dot{\Delta }_{j}, \dot{\Delta }_{k}u\cdot \nabla ]\widetilde{\dot{\Delta }_{k}}v\quad \text{ and } \quad \widetilde{\dot{\Delta }_{k}}=\dot{\Delta }_{k-1}+\dot{\Delta }_{k}+\dot{\Delta }_{k+1}. \end{aligned}$$

Since the summation above is for \(k\) satisfying \(|j-k|\le 2\) and can be replaced by a constant multiple of the representative term with \(k=j\), then it follows from Bernstein inequality and Lemma 6.3 above that

$$\begin{aligned} \Vert J_{1}\Vert _{L^{p}}\le&\,C \sum _{i=1}^{n}\sum _{|k-j|\le 2}2^{-j}\Vert \nabla \dot{S}_{k-1}{u_{i}}\Vert _{L^{\infty }} \Vert \nabla \dot{\Delta }_{k}v\Vert _{L^{p}}\\ \le&\, C\sum _{|k-j|\le 2}2^{k-j}\Vert \nabla \dot{S}_{k-1}{u}\Vert _{L^{\infty }} \Vert \dot{\Delta }_{k}v\Vert _{L^{p}}\\ \le&\, C\Vert \nabla u\Vert _{L^{\infty }} \Vert \dot{\Delta }_{j}v\Vert _{L^{p}}. \end{aligned}$$

Similarly, we can deal with \(J_{2}\) as follows

$$\begin{aligned} \Vert J_{2}\Vert _{L^{p}}\le&\, C \sum _{i=1}^{n}\sum _{|k-j|\le 2}2^{-j}\Vert \nabla {\dot{\Delta }_{k}u_{i}}\Vert _{L^{p}} \Vert \nabla \dot{S}_{k-1}v\Vert _{L^{\infty }}\\ \le&\,C\sum _{|k-j|\le 2}2^{-j}\Vert \nabla {\dot{\Delta }_{k}u}\Vert _{L^{p}} \Vert \nabla \dot{S}_{k-1}v\Vert _{L^{\infty }}\\ \le&\,C\sum _{|k-j|\le 2}2^{-j}2^{k}\Vert {\dot{\Delta }_{k}u}\Vert _{L^{p}} 2^{k}\Vert \dot{S}_{k-1}v\Vert _{L^{\infty }}\\ \le&\, C\sum _{|k-j|\le 2}2^{2k-2j}\Vert {\dot{\Delta }_{k}u}\Vert _{L^{p}} 2^{j}\Vert v\Vert _{L^{\infty }}\\ \le&\, C 2^{j}\Vert v\Vert _{L^{\infty }}\Vert {\dot{\Delta }_{j}u}\Vert _{L^{p}}. \end{aligned}$$

It is much more involved to handle the remainder term \(J_{3}\). We split it into two terms: high frequencies and low frequencies:

$$\begin{aligned} J_{3}=\sum _{k\ge j-1}\dot{\Delta }_{j}[\dot{\Delta }_{k}u\cdot \nabla \widetilde{\dot{\Delta }_{k}}v] +\sum _{|k-j|\le 3}\dot{\Delta }_{k}u\cdot \nabla \dot{\Delta }_{j}\widetilde{\dot{\Delta }_{k}}v\triangleq J_{3}^{1}+J_{3}^{2}. \end{aligned}$$

For the first term we do not need to use the structure of the commutator. We estimate separately each term of the commutator by using Bernstein inequalities: Thanks to divergence-free condition, we can rewrite \(J_{3}^{1}\) as follows:

$$\begin{aligned} J_{3}^{1}=\sum _{k\ge j-1}\sum _{l=1}^{n} \dot{\Delta }_{j}\partial _{l}[\dot{\Delta }_{k}u_{l}\widetilde{\dot{\Delta }_{k}}v]. \end{aligned}$$

Hence,

$$\begin{aligned} \Vert J_{3}^{1}\Vert _{L^{p}}\le C&\sum _{k\ge j-1}2^{j}\Vert \dot{\Delta }_{k}u\widetilde{\dot{\Delta }_{k}}v \Vert _{L^{p}}\\ \le C&\sum _{k\ge j-1}2^{j-k}\Vert \dot{\Delta }_{k}\nabla u\Vert _{L^{\infty }}\Vert \widetilde{\dot{\Delta }_{k}}v \Vert _{L^{p}}\\ \le C&\sum _{k\ge j-1}2^{j-k}\Vert \nabla u\Vert _{L^{\infty }}\Vert {\dot{\Delta }_{k}}v \Vert _{L^{p}}\\ \le C&\Vert \nabla u\Vert _{L^{\infty }} \sum _{k\ge j-1}2^{j-k}\Vert {\dot{\Delta }_{k}}v \Vert _{L^{p}}. \end{aligned}$$

For the second term, we use Bernstein inequalities to obtain

$$\begin{aligned} \Vert J_{3}^{2}\Vert _{L^{p}}\le C&\sum _{|k-j|\le 3}\Vert \dot{\Delta }_{k}u\cdot \nabla \dot{\Delta }_{j}\widetilde{\dot{\Delta }_{k}}v \Vert _{L^{p}}\\ \le C&2^{j} \Vert v\Vert _{L^{\infty }}\Vert \dot{\Delta }_{j}u\Vert _{L^{p}}. \end{aligned}$$

Putting all the above estimates together, we have

$$\begin{aligned} \Vert [\dot{\Delta }_{j}, u\cdot \nabla ]v\Vert _{L^{p}}\le&\, C\Vert \nabla u\Vert _{L^{\infty }} \Vert \dot{\Delta }_{j}v\Vert _{L^{p}}+ C 2^{j}\Vert v\Vert _{L^{\infty }}\Vert {\dot{\Delta }_{j}u}\Vert _{L^{p}}\\&+\,C \Vert \nabla u\Vert _{L^{\infty }} \sum _{k\ge j-1}2^{j-k}\Vert {\dot{\Delta }_{k}}v \Vert _{L^{p}}. \end{aligned}$$

Multiplying above inequality by \(2^{js}\) then taking \(l_{j}^{r}\) yields

$$\begin{aligned} \big \Vert 2^{js}\Vert [\dot{\Delta }_{j}, u\cdot \nabla ]v\Vert _{L^{p}}\big \Vert _{l_{j}^{r}} \le&\,C \Vert \nabla u\Vert _{L^{\infty }}\Vert v\Vert _{\dot{B}_{p,r}^{s}}+C \Vert v\Vert _{L^{\infty }}\Vert u\Vert _{\dot{B}_{p,r}^{s+1}}\\&+\,C \Vert \nabla u\Vert _{L^{\infty }} \big \Vert \sum _{k\ge j-1}2^{(j-k)(s+1)}2^{ks}\Vert {\dot{\Delta }_{k}}v \Vert _{L^{p}}\big \Vert _{l_{j}^{r}}\\ \le&\, C \Vert \nabla u\Vert _{L^{\infty }}\Vert v\Vert _{\dot{B}_{p,r}^{s}}+C \Vert v\Vert _{L^{\infty }}\Vert u\Vert _{\dot{B}_{p,r}^{s+1}}+\Vert C_{k}\star D_{m}(j)\Vert _{l_{j}^{r}} \\ \le&\, C \Vert \nabla u\Vert _{L^{\infty }}\Vert v\Vert _{\dot{B}_{p,r}^{s}}+C \Vert v\Vert _{L^{\infty }}\Vert u\Vert _{\dot{B}_{p,r}^{s+1}}, \end{aligned}$$

where \(C_{k}=\chi _{[k\le 1]}2^{(s+1)k}\) and \(D_{m}=2^{ms}\Vert {\dot{\Delta }_{m}}v \Vert _{L^{p}}\). Here, the discrete Young inequality has been applied. Note the following fact

$$\begin{aligned} \Vert u\Vert _{\dot{B}_{p,r}^{s+1}}\thickapprox \Vert \nabla u\Vert _{\dot{B}_{p,r}^{s}}\thickapprox \Vert \omega \Vert _{\dot{B}_{p,r}^{s}}; \end{aligned}$$

thus, the desired inequalities can be obtained immediately. Therefore, we have completed the proof Lemma 2.7. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Xu, X. & Ye, Z. Global Smooth Solutions to the n-Dimensional Damped Models of Incompressible Fluid Mechanics with Small Initial Datum. J Nonlinear Sci 25, 157–192 (2015). https://doi.org/10.1007/s00332-014-9224-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-014-9224-7

Keywords

Mathematics Subject Classification

Navigation