Skip to main content
Log in

On Energy Cascades in the Forced 3D Navier–Stokes Equations

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We show—in the framework of physical scales and \((K_1,K_2)\)-averages—that Kolmogorov’s dissipation law combined with the smallness condition on a Taylor length scale is sufficient to guarantee energy cascades in the forced Navier–Stokes equations. Moreover, in the periodic case we establish restrictive scaling laws—in terms of Grashof number—for kinetic energy, energy flux, and energy dissipation rate. These are used to improve our sufficient condition for forced cascades in physical scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Balci, N., Foias, C., Jolly, M.S., Rosa, R.: On universal relations in 2-D turbulence. Discrete Contin. Dyn. Syst. 27(4), 1327–1351 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35(6), 771–831 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Cheskidov, A.: Blow-up in finite time for the dyadic model of the Navier–Stokes equations. Trans. Am. Math. Soc. 360(10), 5101–5120 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Cheskidov, A.: Global attractors of evolutionary systems. J. Dyn. Differ. Equ. 21(2), 249–268 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Cheskidov, A., Constantin, P., Friedlander, S., Shvydkoy, R.: Energy conservation and Onsager’s conjecture for the Euler equations. Nonlinearity 21(6), 1233–1252 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Cheskidov, A., Friedlander, S.: The vanishing viscosity limit for a dyadic model. Phys. D 238(8), 783–787 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Cheskidov, A., Shvydkoy, R.: Euler equations and turbulence: analytical approach to intermittency. SIAM J. Math. Anal. 46(1), 353–374 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, P.: The Littlewood–Paley spectrum in two-dimensional turbulence. Theor. Comput. Fluid Dyn. 9(3–4), 183–189 (1997)

    Article  MATH  Google Scholar 

  • Constantin, P., Doering, C.R.: Variational bounds on energy dissipation in incompressible flows: shear flow. Phys. Rev. E (3) 49(5, part A), 4087–4099 (1994)

    Article  MathSciNet  Google Scholar 

  • Dascaliuc, R., Foias, C., Jolly, M.S.: Relations between energy and enstrophy on the global attractor of the 2-D Navier–Stokes equations. J. Dyn. Differ. Equ. 17(4), 643–736 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Dascaliuc, R., Foias, C., Jolly, M.S.: Universal bounds on the attractor of the Navier–Stokes equation in the energy, enstrophy plane. J. Math. Phys. 48(6), 065201, 33 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Dascaliuc, R., Foias, C., Jolly, M.S.: On the asymptotic behavior of average energy and enstrophy in 3D turbulent flows. Phys. D 238(7), 725–736 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Dascaliuc, R., Grujić, Z.: Energy cascades and flux locality in physical scales of the 3D Navier–Stokes equations. Commun. Math. Phys. 305(1), 199–220 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Dascaliuc, R., Grujić, Z.: Anomalous dissipation and energy cascade in 3D inviscid flows. Commun. Math. Phys. 309(3), 757–770 (2012a)

    Article  MathSciNet  MATH  Google Scholar 

  • Dascaliuc, R., Grujić, Z.: Dissipation anomaly and energy cascade in 3D incompressible flows. C. R. Math. Acad. Sci. Paris 350(3–4), 199–202 (2012b)

    Article  MathSciNet  MATH  Google Scholar 

  • Dascaliuc, R., Grujić, Z.: Vortex stretching and criticality for the three-dimensional Navier–Stokes equations. J. Math. Phys. 53(11), 115613, 9 (2012c)

    Article  MathSciNet  MATH  Google Scholar 

  • Dascaliuc, R., Grujić, Z.: Coherent vortex structures and 3D enstrophy cascade. Commun. Math. Phys. 317(2), 547–561 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Doering, C.R., Foias, C.: Energy dissipation in body-forced turbulence. J. Fluid Mech. 467, 289–306 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Eyink, G.L.: Locality of turbulent cascades. Phys. D 207(1), 91–116 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Foias, C.: What do the Navier–Stokes equations tell us about turbulence? In: Harmonic Analysis and Nonlinear Differential Equations (Riverside, CA, 1995), volume 208 of Contemp. Math., pp. 151–180. Amer. Math. Soc., Providence (1997)

  • Foias, C., Manley, O., Rosa, R., Temam, R.: Navier–Stokes Equations and Turbulence, Volume 83 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2001a)

    MATH  Google Scholar 

  • Foias, C., Manley, O.P., Rosa, R., Temam, R.: Cascade of energy in turbulent flows. C. R. Acad. Sci. Paris Sér. I Math. 332(6), 509–514 (2001b)

    Article  MathSciNet  MATH  Google Scholar 

  • Foias, C., Manley, O.P., Rosa, R., Temam, R.: Estimates for the energy cascade in three-dimensional turbulent flows. C. R. Acad. Sci. Paris Sér. I Math. 333(5), 499–504 (2001c)

    Article  MathSciNet  MATH  Google Scholar 

  • Foias, C., Rosa, R., Temam, R.: Topological properties of the weak global attractor of the three-dimensional Navier–Stokes equations. Discrete Contin. Dyn. Syst. 27(4), 1611–1631 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Foias, C., Temam, R.: The connection between the Navier–Stokes equations, dynamical systems, and turbulence theory. In: Directions in Partial Differential Equations (Madison, WI, 1985), volume 54 of Publ. Math. Res. Center Univ. Wisconsin, pp. 55–73. Academic Press, Boston (1987)

  • Frisch, U.: Turbulence. Cambridge University Press, Cambridge (1995). (The legacy of A. N. Kolmogorov)

    MATH  Google Scholar 

  • Goldstein, R.: Fluid Mechanics Measurements. CRC Press, Boca Raton (1996)

    Google Scholar 

  • Katz, N., Pavlović, N.: Finite time blow-up for a dyadic model of the Euler equations. Trans. Am. Math. Soc. 357(2), 695–708 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Kolmogoroff, A.N.: On degeneration of isotropic turbulence in an incompressible viscous liquid. C. R. (Doklady) Acad. Sci. URSS (N. S.) 31, 538–540 (1941)

    MathSciNet  MATH  Google Scholar 

  • Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc. R. Soc. Lond. Ser. A 434(1890), 9–13 (1991). (Translated from the Russian by V. Levin, Turbulence and stochastic processes: Kolmogorov’s ideas 50 years on)

    Article  MathSciNet  MATH  Google Scholar 

  • Lemarié-Rieusset, P.G.: Recent Developments in the Navier–Stokes Problem, Volume 431 of Chapman & Hall/CRC Research Notes in Mathematics. Chapman & Hall/CRC, Boca Raton (2002)

    MATH  Google Scholar 

  • Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  • Otto, F., Ramos, F.: Universal bounds for the Littlewood–Paley first-order moments of the 3D Navier–Stokes equations. Commun. Math. Phys. 300(2), 301–315 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Richardson, L.F.: Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. Lond. A 110, 709–737 (1926)

    Article  Google Scholar 

  • Scheffer, V.: Hausdorff measure and the Navier–Stokes equations. Commun. Math. Phys. 55(2), 97–112 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Sulem, P.L., Frisch, U.: Bounds on energy flux for finite energy turbulence. J. Fluid Mech. 72(03), 417–423 (1975)

    Article  MATH  Google Scholar 

  • Tao, T.: Finite time blowup for an averaged three-dimensional Navier–Stokes equation (2014). arXiv:1402.0290

  • Taylor, G.I.: Statistical theory of turbulence. Proc. R. Soc. Lond. A A151, 421–478 (1935)

    Article  MATH  Google Scholar 

  • Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis, 3rd edn. AMS, Chelsea (1984)

    MATH  Google Scholar 

  • Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Volume 68 of Applied Mathematical Sciences, 2nd edn. Springer, New York (1997)

    Book  Google Scholar 

  • Višik, M.I., Fursikov, A.V.: Matematicheskie zadachi statisticheskoi gidromekhaniki. Nauka, Moscow (1980)

    Google Scholar 

  • Zhang, Q.S.: A strong regularity result for parabolic equations. Commun. Math. Phys. 244(2), 245–260 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Grujić.

Additional information

Communicated by Peter Constantin.

R.D. was supported in part by National Science Foundation Grant DMS-1211413. Z.G. acknowledges support of the Research Council of Norway via Grant 213474/F20 and the NSF via Grant DMS-1212023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dascaliuc, R., Grujić, Z. On Energy Cascades in the Forced 3D Navier–Stokes Equations. J Nonlinear Sci 26, 683–715 (2016). https://doi.org/10.1007/s00332-016-9287-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-016-9287-8

Keywords

Mathematics Subject Classification

Navigation