Skip to main content
Log in

Integrable Semi-discrete Kundu–Eckhaus Equation: Darboux Transformation, Breather, Rogue Wave and Continuous Limit Theory

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

To get more insight into the relation between discrete model and continuous counterpart, a new integrable semi-discrete Kundu–Eckhaus equation is derived from the reduction in an extended Ablowitz–Ladik hierarchy. The integrability of the semi-discrete model is confirmed by showing the existence of Lax pair and infinite number of conservation laws. The dynamic characteristics of the breather and rational solutions have been analyzed in detail for our semi-discrete Kundu–Eckhaus equation to reveal some new interesting phenomena which was not found in continuous one. It is shown that the theory of the discrete system including Lax pair, Darboux transformation and explicit solutions systematically yields their continuous counterparts in the continuous limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ablowitz, M.J., Ladik, J.F.: Nonlinear differential-difference equations. J. Math. Phys. 16, 598–603 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Ablowitz, M.J., Ladik, J.F.: Nonlinear differential-difference equations and Fourier analysis. J. Math. Phys. 17, 1011–1018 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  • Ablowitz, M.J., Herbst, B.M., Schober, C.M.: Discretizations, integrable systems and computation. J. Phys. A Math. Gen. 34, 10671–10693 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and Continuous Nonlinear Schrödinger Systems. Cambridge University Press, New York (2004)

    MATH  Google Scholar 

  • Calogero, F., Eckhaus, W.: Nonlinear evolution equations, rescalings, model PDEs and their integrability: I. Inverse Probl. 3, 229–262 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Clarkson, P.A., Cosgrove, C.M.: Painleve analysis of the nonlinear Schrödinger family of equations. J. Phys. A Math. Gen. 20, 2003–2024 (1987)

    Article  MATH  Google Scholar 

  • Flach, S., Gorbach, A.V.: Discrete breathers—advances in theory and applications. Phys. Rep. 467, 1–116 (2008)

    Article  MATH  Google Scholar 

  • Geng, X.G.: A hierarchy of non-linear evolution equations, its Hamiltonian structure and classical integrable system. Physica A 80, 241–251 (1992)

    Google Scholar 

  • Geng, X.G., Tam, H.W.: Darboux transformation and soliton solutions for generalized nonlinear Schrödinger equations. J. Phys. Soc. Jpn. 68, 1508–1512 (1999)

    Article  MATH  Google Scholar 

  • Gieseker, D.: The Toda hierarchy and the KdV hierarchy. Commun. Math. Phys. 181, 587–603 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Gorshkov, K.A., Pelinovsky, D.E.: Asymptotic theory of plane soliton self-focusing in two-dimensional wave media. Physica D 85, 468–484 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Gu, C.H., Hu, H.S., Zhou, Z.X.: Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  • Johnson, R.S.: On the modulation of water waves in the neighbourhood of \(kh\approx \) 1.363. Proc. R. Soc. Lond. A 357, 131–141 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Kakei, S., Sasa, N., Satsuma, J.: Bilinearization of a generalized derivative nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 64, 1519–1523 (1995)

    Article  MATH  Google Scholar 

  • Kundu, A.: Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations. J. Math. Phys. 25, 3433–3438 (1984)

    Article  MathSciNet  Google Scholar 

  • Levi, D., Scimiterna, C.: The Kundu–Eckhaus equation and its discretizations. J. Phys. A Math. Theor. 42, 465203 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, R.L., Ma, W.X., Zeng, Y.B.: Higher order potential expansion for the continuous limits of the Toda hierarchy. J. Phys. A Math. Gen. 35, 4915–4928 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  • Morosi, C., Pizzocchero, L.: On the continuous limit of integrable lattices I. The Kac-Moerbeke system and KdV theory. Commun. Math. Phys. 180, 505–528 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Ohta, Y., Yang, J.K.: General rogue waves in the focusing and defocusing Ablowitz–Ladik equations. J. Phys. A Math. Theor. 47, 255201 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Qiu, D.Q., He, J.S., Zhang, Y.S., Porsezian, K.: The Darboux transformation of the Kundu–Eckhaus equation. Proc. R. Soc. A 471, 20150236 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Schwarz, M.: Korteweg-de Vries and nonlinear equations related to the Toda lattice. Adv. Math. 44, 132–154 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  • Tsuchida, T.: Integrable discretizations of derivative nonlinear Schrödinger equations. J. Phys. A Math. Gen. 35, 7827–7847 (2002)

    Article  MATH  Google Scholar 

  • Vakhnenko, O.O.: Semi-discrete integrable nonlinear Schrödinger system with background-controlled inter-site resonant coupling. J. Nonlinear Math. Phys. 24, 250–302 (2017)

    Article  MathSciNet  Google Scholar 

  • Vekslerchik, V.E., Konotop, V.V.: Discrete nonlinear Schrödinger equation under non-vanishing boundary conditions. Inverse Probl. 8, 889–909 (1992)

    Article  MATH  Google Scholar 

  • Zeng, Y.B., Wojciechowski, S.R.: Continuous limits for the Kac-Van Moerbeke hierarchy and for their restricted flows. J. Phys. A Math. Gen. 28, 3825–3840 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, Y.S., Guo, L.J., Zhou, Z.X., He, J.S.: Darboux transformation of the second-type derivative nonlinear Schrödinger equation. Lett. Math. Phys. 105, 853–891 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, H.Q., Zhu, Z.N.: Multisoliton, multipositon, multinegaton and multiperiodic solutions of a coupled Volterra lattice system and their continuous limits. J. Math. Phys. 52, 023512 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, Z.N., Zhao, H.Q., Zhang, F.F.: Explicit solutions to an integrable lattice. Stud. Appl. Math. 125, 55–67 (2010)

    MathSciNet  MATH  Google Scholar 

  • Zhu, Z.N., Zhao, H.Q., Wu, X.N.: On the continuous limits and integrability of a new coupled semidiscrete mKdV system. J. Math. Phys. 52, 043508 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of HQZ is supported by National Natural Science Foundation of China under Grant 11301331, Natural Science Foundation of Shanghai under Grant 17ZR1411600, and Innovation Program of Shanghai Municipal Education Commission under Grant 14YZ135, that of JYY by CAPES and CNPq of Brazil, that of ZNZ by National Natural Science Foundation of China under Grants 11271254, 11428102 and 11671255, and by the Ministry of Economy and Competitiveness of Spain under grands MTM2012-37070 and MTM2016-80276-P(AEI/FEDER,EU). We sincerely thank the referees for their very useful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-qiong Zhao.

Additional information

Communicated by Ferdinand Verhulst.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Hq., Yuan, J. & Zhu, Zn. Integrable Semi-discrete Kundu–Eckhaus Equation: Darboux Transformation, Breather, Rogue Wave and Continuous Limit Theory. J Nonlinear Sci 28, 43–68 (2018). https://doi.org/10.1007/s00332-017-9399-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-017-9399-9

Keywords

Navigation