Skip to main content
Log in

Flocking Dynamics of the Inertial Spin Model with a Multiplicative Communication Weight

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we study a flocking dynamics of the deterministic inertial spin (IS) model. The IS model was introduced for the collective dynamics of active particles with an internal angular momentum, or spin. When the generalized moment of inertia becomes negligible compared to spin dissipation (overdamped limit) and mutual communication weight is a function of a relative distance between interacting particles, the deterministic inertial spin model formally reduces to the Cucker–Smale (CS) model with constant speed constraint whose emergent dynamics has been extensively studied in the previous literature. We present several sufficient frameworks leading to the asymptotic mono-cluster flocking, in which spins and relative velocities tend to zero asymptotically. We also provide several numerical simulations for the decoupled and coupled inertial spin models to see the effect of the C–S velocity flocking and compare them with our analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahn, S.M., Choi, H., Ha, S.-Y., Lee, H.: On collision-avoiding initial configurations to Cucker–Smale type flocking models. Commun. Math. Sci. 10, 625–643 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Attanasi, A., Cavagna, A., Del Castello, L., Giardina, I., Jelic, A., Melillo, S., Parisi, L., Shen, E., Viale, M.: Information transfer and behavioural inertia in starling focks. Nat. Phys. 10, 691–696 (2014)

    Article  Google Scholar 

  • Barbǎlat, I.: Systèmes déquations différentielles doscillations non Linéaires. Rev. Math. Pures Appl. 4, 267–270 (1959)

    MathSciNet  MATH  Google Scholar 

  • Carrillo, J.A., Orsogna, M.R.D., Panferov, V.: Double milling in self-propelled swarms from kinetic theory. Kinet. Relat. Models 2, 363–378 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Carrillo, J.A., Fornasier, M., Rosado, J., Toscani, G.: Asymptotic flocking dynamics for the kinetic Cucker–Smale model. SIAM. J. Math. Anal. 42, 218–236 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Cavagna, A., Cimarelli, A., Giardina, I., Parisi, G., Santagati, R., Stefanini, F., Viale, M.: Scale-free correlations in starling flocks. Proc. Natl. Acad. Sci. USA 107, 11865–11870 (2010)

    Article  Google Scholar 

  • Cavagna, A., Castello, L.D., Giardina, I., Grigera, T., Jelic, A., Melillo, S., Mora, T., Parisi, L., Silvestri, E., Viale, M., Walczak, A.M.: Flocking and turning: a new model for self-organized collective motion. J. Stat. Phys. 158, 601–627 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Chat, H., Ginelli, F., Grgoire, G., Peruani, F., Raynaud, F.: Modeling collective motion: variations on the Vicsek model. Eur. Phys. J. B 64, 451–456 (2008)

    Article  Google Scholar 

  • Chi, D., Choi, S.-H., Ha, S.-Y.: Emergent behaviors of a holonomic particle system on a sphere. J. Math. Phys. 55, 052703 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Cho, J., Ha, S.-Y., Huang, F., Jin, C., Ko, D.: Emergence of bi-cluster flocking for agent-based models with unit speed constraint. Anal. Appl. (Singap.) 14, 39–73 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Choi, S.-H., Ha, S.-Y.: Emergence of flocking for a multi-agent system moving with constant speed. Commun. Math. Sci. 14, 953–972 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Choi, S.-H., Ha, S.-Y.: Interplay of the unit-speed constraint and time-delay in Cucker-Smale flocking. J. Math. Phys. 59(8), 082701 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Chuang, Y.-L., D’Orsogna, M.R., Marthaler, D., Bertozzi, A.L., Chayes, L.S.: State transitions and the continuum limit for a 2D interacting, self-propelled particle system. Phys. D 232, 33–47 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Cucker, F., Smale, S.: On the mathematics of emergence. Jpn. J. Math. 2, 197–227 (2007a)

    Article  MathSciNet  MATH  Google Scholar 

  • Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control 52, 852–862 (2007b)

    Article  MathSciNet  MATH  Google Scholar 

  • D’O’rsogna, M.R., Chuang, Y.-L., Bertozzi, A.L., Chayes, L.S.: Self-propelled particles with soft-core interactions: patterns, stability, and collapse. Phys. Rev. Lett. 96, 104302 (2006)

    Article  Google Scholar 

  • Degond, P., Motsch, S.: Macroscopic limit of self-driven particles with orientation interaction. C. R. Math. Acad. Sci. Paris 345, 555–560 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Degond, P., Motsch, S.: Large-scale dynamics of the persistent turing Walker model of fish behavior. J. Stat. Phys. 131, 989–1022 (2008a)

    Article  MathSciNet  MATH  Google Scholar 

  • Degond, P., Motsch, S.: Continuum limit of self-driven particles with orientation interaction. Math. Models Methods Appl. Sci. 18, 1193–1215 (2008b)

    Article  MathSciNet  MATH  Google Scholar 

  • Degond, P., Liu, J.-G., Motsch, S., Panferov, V.: Hydrodynamic models of self-organized dynamics: derivation and existence theory. Methods Appl. Anal. 20(2), 89–114 (2013)

    MathSciNet  MATH  Google Scholar 

  • Dubovskii, P.B.: Mathematical Theory of Coagulation. Lecture Notes Series, vol. 23. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul (1994)

  • Erdmann, U., Ebeling, W., Mikhailov, A.: Noise-induced transition from translational to rotational motion of swarms. Phys. Rev. E 71, 051904 (2005)

    Article  Google Scholar 

  • Fetecau, R.C., Eftimie, R.: An investigation of a nonlocal hyperbolic model for self-organization of biological groups. J. Math. Biol. 61, 545–579 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Frouvelle, A., Liu, J.-G.: Dynamics in a kinetic model of oriented particles with phase transition. SIAM J. Math. Anal. 44, 791826 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Grégoire, G., Chaté, H., Tu, Y.: Moving and staying together without a leader. Phys. D 181, 157–170 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Ha, S.-Y., Liu, J.-G.: A simple proof of Cucker–Smale flocking dynamics and mean field limit. Commun. Math. Sci. 7, 297–325 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Ha, S.-Y., Ruggeri, T.: Emergent dynamics of a thermodynamically consistent particle model. Arch. Ration. Mech. Anal. 223, 1397–1425 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Ha, S.-Y., Tadmor, E.: From particle to kinetic and hydrodynamic description of flocking. Kinet. Relat. Models 1, 415–435 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Ha, S.-Y., Ha, T., Kim, J.-H.: Asymptotic flocking dynamics for the Cucker–Smale model with the Rayleigh friction. J. Phys. A Math. Theor. 43, 315201 (2010a)

    Article  MATH  Google Scholar 

  • Ha, S.-Y., Ha, T., Kim, J.-H.: Emergent behavior of a Cucker–Smale type particle model with nonlinear velocity couplings. IEEE Trans. Autom. Control 55, 1679–1683 (2010b)

    Article  MathSciNet  MATH  Google Scholar 

  • Ha, S.-Y., Jeong, E., Kang, M.-J.: Emergent behavior of a generalized Vicsek-type flocking model. Nonlinearity 23, 3139–3156 (2010c)

    Article  MathSciNet  MATH  Google Scholar 

  • Ha, S.-Y., Ko, D., Zhang, Y.: Remarks on the critical coupling strength for the Cucker–Smale model with unit speed. Discrete Contin. Dyn. Syst. 38, 2763–2793 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48, 988–1001 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Justh, E., Krishnaprasad, P.A.: A simple control law for UAV formation flying. Technical Report 2002–38. Institute for Systems Research, University of Maryland, College Park, MD (2002)

  • Justh, E., Krishnaprasad, P.A.: Steering laws and continuum models for planar formations. In: Proceedings of the 42nd IEEE Conference on Decision and Control, pp. 3609–3615 (2003)

  • Leonard, N.E., Paley, D.A., Lekien, F., Sepulchre, R., Fratantoni, D.M., Davis, R.E.: Collective motion, sensor networks and ocean sampling. Proc. IEEE 95, 48–74 (2007)

    Article  Google Scholar 

  • Levine, H., Rappel, W.-J., Cohen, I.: Self-organization in systems of self-propelled particles. Phys. Rev. E 63, 017101 (2000)

    Article  Google Scholar 

  • Motsch, S., Tadmor, E.: A new model for self-organized dynamics and its flocking behavior. J. Stat. Phys. 144, 923–947 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Mikhailov, A.S., Zanette, D.H.: Noise-induced breakdown of coherent collective motion in swarms. Phys. Rev. E 60, 4571–4575 (1999)

    Article  Google Scholar 

  • Nguyen, N.H.P., Jankowski, E., Glotzer, S.C.: Thermal and athermal three-dimensional swarms of self-propelled particles. Phys. Rev. E 86, 011136 (2012)

    Article  Google Scholar 

  • Paley, D.A., Leonard, N.E., Sepulchre, R., Grunbaum, D., Parrish, J.K.: Oscillator models and collective motion: spatial patterns in the dynamics of engineered and biological networks. IEEE Control Syst. Mag. 27, 89–105 (2007)

    Google Scholar 

  • Paley, D.A., Leonard, N.E., Sepulchre, R.: Stabilization of symmetric formations to motion around convex loops. Syst. Control Lett. 57, 209–215 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Peruani, F., Deutsch, A., Bär, M.: A mean-field theory for self-propelled particles interacting by velocity alignment mechanisms. Eur. Phys. J. Spec. Top. 157, 111–122 (2008)

    Article  Google Scholar 

  • Ren, W., Beard, R.W.: Consensus seeking in multi-agent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50, 655–661 (2005)

    Article  MATH  Google Scholar 

  • Toner, J., Tu, Y.: Flocks, herds, and schools: a quantitative theory of flocking. Phys. Rev. E 58, 4828 (1998)

    Article  MathSciNet  Google Scholar 

  • Topaz, C.M., Bertozzi, A.L.: Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math. 65, 152–174 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Schochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woojoo Shim.

Additional information

Communicated by Paul Newton.

The work of S.-Y. Ha was supported by National Research Foundation of Korea (NRF-2017R1A2B2001864).

Appendix A: Proof of Proposition 4.3

Appendix A: Proof of Proposition 4.3

First, we define \(\mathcal {E}^\infty \) and \(\bar{w}_c^\infty \) as the limits of \(\mathcal {E}\) and \(|{\bar{w}}_c|\), respectively.

  • Step A [convergence of (VS)] By letting \(t\rightarrow \infty \) in Proposition 4.2, we have

    $$\begin{aligned} {\mathcal {E}}^\infty + \frac{4\gamma }{\chi ^2 \kappa } \int _0^\infty {\mathcal {S}}(u)\mathrm{d}u = {\mathcal {E}}(t) + \frac{2}{\chi \kappa }{\mathcal {S}}(t) + \frac{4\gamma }{\chi ^2\kappa }\int _0^t {\mathcal {S}}(u)\mathrm{d}u. \end{aligned}$$

This can be rewritten as

$$\begin{aligned}&2\left( \frac{1}{N}\sum _{i=1}^Np_i^2-({\bar{w}}_c^\infty )^2\right) + \frac{4\gamma }{\chi ^2\kappa } \int _t^\infty {\mathcal {S}}(u)\mathrm{d}u \\&\quad = 2\left( \frac{1}{N}\sum _{i=1}^Np_i^2-|{\bar{w}}_c|^2\right) + \frac{2}{\chi \kappa }{\mathcal {S}}(t). \end{aligned}$$

Hence, we have

$$\begin{aligned} ({\bar{w}}_c^\infty )^2 = \frac{2\gamma }{\chi ^2\kappa }\int _t^\infty {\mathcal {S}}(u)\mathrm{d}u - \frac{1}{\chi \kappa } {\mathcal {S}}(t) + |{\bar{w}}_c|^2 \ge \frac{2\gamma }{\chi ^2\kappa }\int _t^\infty {\mathcal {S}}(u)\mathrm{d}u -\frac{1}{\chi \kappa }{\mathcal {S}}(t). \end{aligned}$$

Since we assume \({\bar{w}}_c^\infty =0\) in Proposition 4.4, we have

$$\begin{aligned} \frac{2\gamma }{\chi ^2\kappa } \int _{t}^\infty {\mathcal {S}}(u) \mathrm{d}u - \frac{1}{\chi \kappa } {\mathcal {S}}(t) \le 0, \quad \forall t\in \mathbb {R}. \end{aligned}$$
(A.1)

If we define

$$\begin{aligned} g(t) := \int _t^\infty {\mathcal {S}}(u)\mathrm{d}u, \end{aligned}$$

then (A.1) becomes

$$\begin{aligned} \quad g^\prime (t) + \frac{2\gamma }{\chi } g(t) \le 0. \end{aligned}$$

This implies

$$\begin{aligned} 0\le g(t) \le g(0)e^{-\frac{2\gamma }{\chi } t},\quad \forall t\in \mathbb {R}. \end{aligned}$$

On the other hand, since the following relation holds:

$$\begin{aligned} \left( -g(t)e^{-\frac{\gamma }{\chi } t} \right) ^\prime = {\mathcal {S}}(t) e^{\frac{\gamma }{\chi } t} - \frac{\gamma }{\chi } g(t)e^{\frac{\gamma }{\chi } t}, \end{aligned}$$

we obtain

$$\begin{aligned} \int _0^t {\mathcal {S}}(u) e^{\frac{\gamma }{\chi } u } \mathrm{d}u&= \int _0^t \frac{\gamma }{\chi } g(u) e^{\frac{\gamma }{\chi }u} + g(0) - g(t) e^{\frac{\gamma }{m}t} \\&\le \frac{\gamma }{\chi } g(0) \int _0^t e^{-\frac{\gamma }{\chi } u } \mathrm{d}u + g(0) \\&\le g(0) \left( 1- e^{-\frac{\gamma }{\chi }t } \right) + g(0)= 2g(0). \end{aligned}$$

Thus, we have

$$\begin{aligned} \int _0^\infty {\mathcal {S}}(u) e^{\frac{\gamma }{m}u}\mathrm{d}u< \infty , \quad \text {i.e.,} \quad \int _0^\infty |s_i(u)|^2 e^{\frac{\gamma }{m} u } \mathrm{d}u <\infty , \quad i=1,\ldots ,N. \end{aligned}$$

From the relation \(\chi |\dot{w}_i| = p_i|s_i|\) in (4.21)\(_1\), this is equivalent with

$$\begin{aligned} \int _0^\infty |\dot{w}_i(u)|^2 e^{\frac{\gamma }{\chi }u}\mathrm{d}u <\infty . \end{aligned}$$

We use Hölder’s inequality to obtain

$$\begin{aligned} \int _0^\infty | \dot{w}_i| \mathrm{d}u&= \int _0^\infty |\dot{w}_i(u)| e^{ \frac{\gamma }{2\chi } u } e^{ -\frac{\gamma }{2\chi } u } \mathrm{d}u \\&\le \left( \int _0^\infty |\dot{w}_i(u)|^2 e^{\frac{\gamma }{\chi } u}du \right) ^\frac{1}{2} \left( \int _0^\infty e^{-\frac{\gamma }{\chi }u}\mathrm{d}u \right) ^\frac{1}{2} <\infty . \end{aligned}$$

Hence, for each i, there exists \((w_i^k)^\infty \in \mathbb {R}\) such that

$$\begin{aligned} \lim _{t\rightarrow \infty } w_i^k(t) = (w_i^k)^\infty , \quad i = 1, \ldots , N,\quad k=1,2,3. \end{aligned}$$

Thus, (VS) converges to \((V^\infty ,S^\infty ):=(\frac{w_1^\infty }{p_1},\ldots ,\frac{w_N^\infty }{p_N},0,\ldots ,0)\).

  •  Step B (linear stability analysis): Now, we show that \((V^\infty ,S^\infty )\) is linearly unstable. For this, we write

    $$\begin{aligned} {\mathcal {I}}= & {} (v_1,\ldots ,v_N, s_1,\ldots ,s_N) \in \mathbb {R}^{6N}~~\text {and}~~ w_i=(w_i^1,w_i^2,w_i^3) \in \mathbb {R}^3, ~~ \\ s_i= & {} (s_i^1,s_i^2,s_i^3) \in \mathbb {R}^3. \end{aligned}$$

We construct \(6N\times 6N\) Jacobian matrix \({\mathbf {X}}\) for \({\mathcal {I}}\)

$$\begin{aligned} {\mathbf {X}}:= \frac{\partial \dot{{\mathcal {I}}}}{\partial {\mathcal {I}}} = \begin{pmatrix} A &{}\quad B \\ C &{}\quad D \end{pmatrix}, \end{aligned}$$

where ABC and D are \(3N\times 3N\) matrices whose forms are as follows:

$$\begin{aligned} A= \frac{\partial \dot{w}_j }{\partial w_i}, \quad B= \frac{\partial \dot{w}_j }{\partial s_i},\quad C= \frac{\partial \dot{s}_j }{\partial w_i}, \quad D= \frac{\partial \dot{s}_j }{\partial s_i}. \end{aligned}$$

\(\diamond \) (Case of A): We use (4.1) and \(s_i^\infty =0\) to find

$$\begin{aligned} A&= \frac{\partial \dot{w}_j }{\partial w_i} = \frac{\partial }{\partial w_i} \left( \frac{1}{\chi } s_j\times w_j\right) \\&=\frac{1}{\chi } \frac{\partial }{\partial w_i }\Big ( s_j^2w_j^3 - s_j^3w_j^2, ~s_j^3w_j^1-s_j^1w_j^3,~s_j^1w_j^2-s_j^2w_j^1\Big ) \\&=\frac{1}{m} {\left\{ \begin{array}{ll} 0 \qquad (i\ne j) \\ \begin{pmatrix} 0 &{}\quad -s_i^3 &{}\quad s_i^2 \\ s_i^3 &{}\quad 0 &{}\quad -s_i^1 \\ -s_i^2 &{}\quad s_i^1 &{}\quad 0 \end{pmatrix} \qquad (i=j) \end{array}\right. } \\&=0. \end{aligned}$$

\(\diamond \) (Case of B): We also use (4.1) and \(s_i^\infty = 0\) to find

$$\begin{aligned} B= \frac{\partial \dot{w}_j }{\partial s_i}&= \frac{1}{\chi } {\left\{ \begin{array}{ll} 0 \qquad (i\ne j) \\ \begin{pmatrix} 0 &{}\quad w_i^3 &{}\quad -w_i^2 \\ -w_i^3 &{}\quad 0 &{}\quad w_i^1 \\ w_i^2 &{}\quad -w_i^1 &{}\quad 0 \end{pmatrix} \qquad (i=j). \end{array}\right. } \end{aligned}$$

\(\diamond \) (Case of C): We use (4.3) and \({\bar{w}}_c^\infty =0\) to obtain

$$\begin{aligned} C&= \frac{\partial \dot{s}_j }{\partial w_i} = \frac{\partial }{\partial w_i} \left( \kappa (w_j\times w_c) - \frac{\gamma }{\chi } s_j\right) \\&= \kappa \frac{\partial }{\partial w_i} \Big ( w_j^2 {\bar{w}}_c^3 - w_j^3 {\bar{w}}_c^2,~w_j^3 {\bar{w}}_c^1-w_j^1{\bar{w}}_c^3,~w_j^1{\bar{w}}_c^2-w_j^2 {\bar{w}}_c^1 \Big ) \\&= {\left\{ \begin{array}{ll} \frac{\kappa }{N} \begin{pmatrix} 0 &{}\quad -w_j^3 &{}\quad w_j^2 \\ w_j^3 &{}\quad 0 &{}\quad -w_j^1 \\ -w_j^2 &{}\quad w_j^1 &{}\quad 0 \end{pmatrix} \qquad (i\ne j) \\ \frac{\kappa }{N} \begin{pmatrix} 0 &{}\quad -w_j^3 &{}\quad w_j^2 \\ w_j^3 &{}\quad 0 &{}\quad -w_j^1 \\ -w_j^2 &{}\quad w_j^1 &{}\quad 0 \end{pmatrix} + \kappa \begin{pmatrix} 0 &{}\quad {\bar{w}}_c^3 &{}\quad -{\bar{w}}_c^2 \\ -{\bar{w}}_c^3 &{}\quad 0 &{}\quad {\bar{w}}_c^1\\ {\bar{w}}_c^2 &{}\quad -{\bar{w}}_c^1 &{}\quad 0 \end{pmatrix} \qquad (i=j) \end{array}\right. } \\&= \frac{\kappa }{N} \begin{pmatrix} 0 &{}\quad -w_j^3 &{}\quad w_j^2 \\ w_j^3 &{}\quad 0 &{}\quad -w_j^1 \\ -w_j^2 &{}\quad w_j^1 &{}\quad 0 \end{pmatrix}. \end{aligned}$$

\(\diamond \) (Case of D): We also obtain

$$\begin{aligned} D= \frac{\partial \dot{s}_j }{\partial s_i} = \frac{\partial }{\partial s_i} \left( \kappa (w_j\times w_c) - \frac{\gamma }{\chi } s_j \right) = -\frac{\gamma }{\chi } \delta _{ij}, \end{aligned}$$

where \(\delta _{ij}\) is the Kronecker delta.

For the handy notation, we write \(3\times 3\) matrix \(W_i\) as

$$\begin{aligned} W_i = \begin{pmatrix} 0 &{}\quad w_i^3 &{}\quad -w_i^2 \\ -w_i^3 &{}\quad 0 &{}\quad w_i^1 \\ w_i^2 &{}\quad -w_i^1 &{}\quad 0 \end{pmatrix}, \quad i=1,\ldots ,N. \end{aligned}$$

Then, we can write the matrix B and C as

$$\begin{aligned} B = \frac{1}{\chi } \text {diag} ( W_1,\ldots ,W_N) \quad \text {and} \quad C = -\frac{\kappa }{N} \begin{pmatrix} W_1 &{}\quad \ldots &{}\quad W_1 \\ \ldots &{}\quad \ddots &{}\quad \ldots \\ W_N &{}\quad \ldots &{}\quad W_N \end{pmatrix}. \end{aligned}$$

Note that

$$\begin{aligned} \text {tr} \left( -W_i^2\right) = 2( w_i^1)^2 + 2(w_i^2)^2 + 2(w_i^3)^2 = 2p_i^2. \end{aligned}$$
(A.2)

Then, we compute the characteristic polynomial of \({\mathbf {X}}\) as follows: for each eigenvalue \(\lambda \),

$$\begin{aligned} 0&=\text {det} \Big ({\mathbf {X}} - \lambda I_{6N}\Big ) = \text {det} \begin{pmatrix} -\lambda I_{3N} &{} B \\ C &{} \left( - \lambda - \frac{\gamma }{\chi } \right) I_{3N} \end{pmatrix} \\&=\text {det} \left( \lambda \left( \lambda + \frac{\gamma }{\chi } \right) I_{3N} - BC \right) \\&=\text {det} \left( \lambda \left( \lambda + \frac{\gamma }{\chi } \right) I_{3N} - \frac{\kappa }{\chi N} \begin{pmatrix} -W_1^2 &{}\quad \ldots &{}\quad -W_1^2 \\ \ldots &{}\quad \ddots &{}\quad \ldots \\ -W_N^2 &{}\quad \ldots &{}\quad -W_N^2 \end{pmatrix} \right) \\&=: \text {det}\left( \lambda \left( \lambda + \frac{\gamma }{\chi } \right) I_{3N} - {\mathcal {M}} \right) . \end{aligned}$$

It follows from (A.2) that \(3N\times 3N\) matrix \({\mathcal {M}}\) has positive trace

$$\begin{aligned} \text {tr}{\mathcal {M}} = \frac{\kappa }{ \chi N} \sum _{i=1}^N \text {tr}\left( -W_i^2 \right) = \frac{2\kappa }{N\chi }\sum _{i=1}^Np_i^2 >0, \end{aligned}$$

and therefore \({\mathcal {M}}\) has an eigenvalue \(\lambda _0\) whose real part is positive, i.e., \(\text {Re}\lambda _0>0\). For this \(\lambda _0\), every \(\lambda \in \mathbb {C}\) satisfying

$$\begin{aligned} \lambda \left( \lambda + \frac{\gamma }{m} \right) = \lambda _0 =: c + \mathrm {i}d, \end{aligned}$$

is an eigenvalue of \({\mathbf {X}}\). Now if we write \(\lambda \) by \(\lambda = a + \mathrm {i}b\), \((a,b,c,d)\in \mathbb {R}^4\), then the above relation implies

$$\begin{aligned} a^2 - b^2 + \frac{\gamma }{\chi } a = \text {Re} \lambda _0=c, \quad 2ab + \frac{\gamma }{\chi } b = \text {Im}\lambda _0=d. \end{aligned}$$

Then,

$$\begin{aligned} c = a^2 + \frac{\gamma }{\chi } a - \frac{\mathrm{d}^2 }{\left( 2a+ \frac{\gamma }{\chi } \right) ^2} = a^2 + \frac{\gamma }{\chi } a - \frac{\mathrm{d}^2 }{4a^2 + \frac{4\gamma }{\chi }a + \frac{\gamma ^2}{\chi ^2}} \end{aligned}$$

and if we write \(Z := a^2 + \frac{\gamma }{\chi }a\), we have

$$\begin{aligned} \quad 4Z^2 + \left( \frac{\gamma ^2}{\chi ^2} -4c\right) Z -d^2 -\frac{\gamma ^2}{\chi ^2} c =0. \end{aligned}$$

Since \(c=\text {Re}\lambda _0>0\), the above quadratic equation attains two distinct real roots \(z_1< 0 <z_2\) and \(Z=a^2 + \frac{\gamma }{\chi }a=b^2+c\) has to be positive. Hence, we have

$$\begin{aligned} a^2 + \frac{\gamma }{\chi } a = z_2, \end{aligned}$$

and the above equation always attains one positive real root. In other words, the matrix \({\mathbf {X}}\) has at least one eigenvalue whose real part is positive. Therefore, we can conclude that the equilibrium is linearly unstable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, SY., Kim, D., Kim, D. et al. Flocking Dynamics of the Inertial Spin Model with a Multiplicative Communication Weight. J Nonlinear Sci 29, 1301–1342 (2019). https://doi.org/10.1007/s00332-018-9518-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-018-9518-2

Keywords

Mathematics Subject Classification

Navigation