Skip to main content
Log in

A Post-Newtonian Expansion Including Radiation Damping for a Collisionless Plasma

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We study the dynamics of many charges interacting with the Maxwell field. The particles are modeled by means of nonnegative distribution functions \(f^+\) and \(f^-\) representing two species of charged matter with positive and negative charge, respectively. If their initial velocities are small compared to the speed of light, \(\mathrm{c}\), then in lowest order, the Newtonian or classical limit, their motion is governed by the Vlasov–Poisson system. We investigate higher-order corrections with an explicit control on the error terms. The Darwin order correction, order \(|\bar{\mathrm{v}}/\mathrm{c}|^2\), has been proved previously. In this contribution, we obtain the dissipative corrections due to radiation damping, which are of order \(|\bar{\mathrm{v}}/\mathrm{c}|^3\) relative to the Newtonian limit. If all particles have the same charge-to-mass ratio, the dissipation would vanish at that order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, B.P., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)

    MathSciNet  Google Scholar 

  • Asano, K., Ukai, S.: On the Vlasov–Poisson Limit of the Vlasov–Maxwell Equation, Volume 18 of Studies in Mathematics Applied, pp. 369–383. North-Holland Publishing Co., Amsterdam (1986)

    MATH  Google Scholar 

  • Bauer, S.: Post-Newtonian dynamics at order 1.5 in the Vlasov-Maxwell system (2006, February). https://arxiv.org/abs/math-ph/0602031ArXive-prints

  • Bauer, S.: A non-relativistic model of plasma physics containing a radiation reaction term. Kinet. Relat. Models 11(1), 25–42 (2018)

    MathSciNet  MATH  Google Scholar 

  • Bauer, S.: Darwin and higher order approximations to Maxwell’s equations in \(\mathbb{R}^3\). In: Langer, U., Pauly, D., Repin, S.I. (eds.) Maxwell’s Equations. Analysis and Numerics, pp. 45-75 De Gruyter, Berlin (2019)

  • Bauer, S., Kunze, M.: The Darwin approximation of the relativistic Vlasov–Maxwell system. Ann. Henri Poincaré 6(2), 283–308 (2005)

    MathSciNet  MATH  Google Scholar 

  • Bauer, S., Kunze, M.: Radiative friction for charges interacting with the radiation field: classical many-particle systems. In: Mielke, A. (ed.) Analysis, Modeling and Simulation of Multiscale Problems, pp. 531–551. Springer, Berlin (2006)

  • Bauer, S., Kunze, M., Rein, G., Rendall, A.D.: Multipole radiation in a collisionless gas coupled to electromagnetism or scalar gravitation. Commun. Math. Phys. 266(1), 267–288 (2006)

    MathSciNet  MATH  Google Scholar 

  • Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York (1978)

    MATH  Google Scholar 

  • Besse, N., Mauser, N.J., Sonnendrücker, E.: Numerical approximation of self-consistent Vlasov models for low-frequency electromagnetic phenomena. Int. J. Appl. Math. Comput. Sci. 17(3), 361–374 (2007)

    MathSciNet  MATH  Google Scholar 

  • Blanchet, L.: Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Relativ. 17, 2 (2014)

    MATH  Google Scholar 

  • Bostan, M.: Asymptotic behavior of weak solutions for the relativistic Vlasov–Maxwell equations with large light speed. J. Differ. Equ. 227(2), 444–498 (2006)

    MathSciNet  MATH  Google Scholar 

  • Bouchut, F., Golse, F., Pallard, C.: Classical solutions and the Glassey–Strauss theorem for the 3D Vlasov–Maxwell system. Arch. Ration. Mech. Anal. 170(1), 1–15 (2003)

    MathSciNet  MATH  Google Scholar 

  • Calogero, S.: Global small solutions of the Vlasov-Maxwell system in the absence of incoming radiation. Indiana Univ. Math. J. 53(5), 19–34 (2004)

    MathSciNet  MATH  Google Scholar 

  • Calogero, S.: Outgoing radiation from an isolated plasma. Ann. Henri Poincaré 5(1), 189–201 (2004)

    MathSciNet  MATH  Google Scholar 

  • Calogero, S.: On a characteristic initial value problem in plasma physics. Ann. Henri Poincaré 7(2), 233–252 (2006)

    MathSciNet  MATH  Google Scholar 

  • Calogero, S.: A mathematical theory of isolated systems in relativistic plasma physics. J. Hyperb. Differ. Equ. 4(2), 267–294 (2007)

    MathSciNet  MATH  Google Scholar 

  • Calogero, S., Lee, H.: The non-relativistic limit of the Nordström–Vlasov system. Commun. Math. Sci. 2, 19–34 (2004)

    MathSciNet  MATH  Google Scholar 

  • Chen, G., Chacón, L.: A multi-dimensional, energy- and charge-conserving, nonlinearly implicit, electromagnetic Vlasov–Darwin particle-in-cell algorithm. Comput. Phys. Commun. 197, 73–87 (2015)

    MathSciNet  MATH  Google Scholar 

  • Chen, J., Zhang, X.: Global existence of small amplitude solutions to the Vlasov–Poisson system with radiation damping. Intern. J. Math. 26(12), 1550098 (2015). 19

    MathSciNet  MATH  Google Scholar 

  • Chen, J., Zhang, X., Gao, R.: Existence, uniqueness and asymptotic behavior for the Vlasov–Poisson system with radiation damping. Acta Math. Sin. (Engl. Ser.) 33(5), 635–656 (2017)

    MathSciNet  MATH  Google Scholar 

  • Degond, P.: Local existence of solutions of the Vlasov–Maxwell equations and convergence to the Vlasov–Poisson equation for infinite light velocity. Math. Methods Appl. Sci. 8, 533–558 (1986)

    MathSciNet  MATH  Google Scholar 

  • Degond, P., Raviart, P.: An analysis of the Darwin model of approximation to Maxwell’s equations. Forum Math. 4, 13–44 (1992)

    MathSciNet  MATH  Google Scholar 

  • DiPerna, R.J., Lions, P.-L.: Global weak solutions of Vlasov–Maxwell systems. Commun. Pure Appl. Math. 42(6), 729–757 (1989)

    MathSciNet  MATH  Google Scholar 

  • Glassey, R.T., Strauss, W.: Singularity formation in a collisionless plasma could occur only at high velocities. Arch. Ration. Mech. Anal. 92, 59–90 (1986)

    MathSciNet  MATH  Google Scholar 

  • Glassey, R.T., Strauss, W.A.: Absence of shocks in an initially dilute collisionless plasma. Commun. Math. Phys. 113(2), 191–208 (1987)

    MathSciNet  MATH  Google Scholar 

  • Han-Kwan, D., Nguyen, T.T., Rousset, F.: Long time estimates for the Vlasov–Maxwell system in the non-relativistic limit. Commun. Math. Phys. 363(2), 389–434 (2018)

    MathSciNet  MATH  Google Scholar 

  • Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1998)

    MATH  Google Scholar 

  • Klainerman, S., Staffilani, G.: A new approach to study the Vlasov–Maxwell system. Commun. Pure Appl. Anal. 1(1), 103–125 (2002)

    MathSciNet  MATH  Google Scholar 

  • Kunze, M.: Yet another criterion for global existence in the 3D relativistic Vlasov–Maxwell system. J. Differ. Equ. 259(9), 4413–4442 (2015)

    MathSciNet  MATH  Google Scholar 

  • Kunze, M.: Higher regularity of the tangential fields in the relativistic Vlasov-Maxwell system. J. Differ. Equ. 265(6), 2778–2792 (2018)

    MathSciNet  MATH  Google Scholar 

  • Kunze, M., Rendall, A.D.: Simplified models of electromagnetic and gravitational radiation damping. Class. Quantum Gravity 18(17), 3573–3587 (2001)

    MathSciNet  MATH  Google Scholar 

  • Kunze, M., Rendall, A.D.: The Vlasov–Poisson system with radiation damping. Ann. Henri Poincaré 2(5), 857–886 (2001)

    MathSciNet  MATH  Google Scholar 

  • Kunze, M., Spohn, H.: Slow motion of charges interacting through the Maxwell field. Commun. Math. Phys. 212(2), 437–467 (2000)

    MathSciNet  MATH  Google Scholar 

  • Kunze, M., Spohn, H.: Post-Coulombian dynamics at order \(c^{-3}\). J. Nonlinear Sci. 11(5), 321–396 (2001)

    MathSciNet  MATH  Google Scholar 

  • Lee, H.: The classical limit of the relativistic Vlasov–Maxwell system in two space dimensions. Math. Methods Appl. Sci. 27(3), 249–287 (2004)

    MathSciNet  MATH  Google Scholar 

  • Leis, R.: Initial-boundary Value Problems in Mathematical Physics. B. G. Teubner, Stuttgart. Wiley, Chichester (1986)

    MATH  Google Scholar 

  • Lieb, E.H., Loss, M.: Analysis, Volume 14 of Graduate Studies in Mathematics, vol. second. American Mathematical Society, Providence (2001)

    Google Scholar 

  • Lions, P.-L., Perthame, B.: Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system. Invent. Math. 105(2), 415–430 (1991)

    MathSciNet  MATH  Google Scholar 

  • Liu, C., Oliynyk, T.A.: Cosmological Newtonian limits on large spacetime scales. Commun. Math. Phys. 364(3), 1195–1304 (2018)

    MathSciNet  MATH  Google Scholar 

  • Luk, J., Strain, R.M.: A new continuation criterion for the relativistic Vlasov–Maxwell system. Commun. Math. Phys. 331(3), 1005–1027 (2014)

    MathSciNet  MATH  Google Scholar 

  • Luk, J., Strain, R.M.: Strichartz estimates and moment bounds for the relativistic Vlasov–Maxwell system. Arch. Ration. Mech. Anal. 219(1), 445–552 (2016)

    MathSciNet  MATH  Google Scholar 

  • Mauser, N.J., Selberg, S.: Convergence of the Dirac–Maxwell system to the Vlasov–Poisson system. Commun. Partial Differ. Equ. 32(1–3), 503–524 (2007)

    MathSciNet  MATH  Google Scholar 

  • McGillen, D.J.: A low velocity approximation for the relativistic Vlasov–Maxwell system. Math. Methods Appl. Sci. 18(9), 739–753 (1995)

    MathSciNet  MATH  Google Scholar 

  • Oliynyk, T.A.: The Newtonian limit for perfect fluids. Commun. Math. Phys. 276(1), 131–188 (2007)

    MathSciNet  MATH  Google Scholar 

  • Oliynyk, T.A.: Post-Newtonian expansions for perfect fluids. Commun. Math. Phys. 288(3), 847–886 (2009)

    MathSciNet  MATH  Google Scholar 

  • Pallard, C.: A lower bound for the life span of solutions to relativistic Vlasov–Maxwell systems. Asymptot. Anal. 56(3–4), 205–228 (2008)

    MathSciNet  MATH  Google Scholar 

  • Pallard, C.: A refined existence criterion for the relativistic Vlasov–Maxwell system. Commun. Math. Sci. 13(2), 347–354 (2015)

    MathSciNet  MATH  Google Scholar 

  • Patel, N.: Three new results on continuation criteria for the 3D relativistic Vlasov–Maxwell system. J. Differ. Equ. 264(3), 1841–1885 (2018)

    MathSciNet  MATH  Google Scholar 

  • Pfaffelmoser, K.: Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data. J. Differ. Equ. 95(2), 281–303 (1992)

    MathSciNet  MATH  Google Scholar 

  • Rapetti, F., Rousseaux, G.: On quasi-static models hidden in Maxwell’s equations. Appl. Numer. Math. 79, 92–106 (2014)

    MathSciNet  MATH  Google Scholar 

  • Raviart, P.-A., Sonnendrücker, E.: A hierarchy of approximate models for the Maxwell equations. Numer. Math. 73(3), 329–372 (1996)

    MathSciNet  MATH  Google Scholar 

  • Rein, G., Rendall, A.D.: The Newtonian limit of the spherically symmetric Vlasov–Einstein system. Commun. Math. Phys. 150(3), 585–591 (1992)

    MathSciNet  MATH  Google Scholar 

  • Rendall, A.D.: On the definition of post-Newtonian approximation. Proc. R. Soc. Lond. A 438(1903), 341–360 (1992)

    MathSciNet  MATH  Google Scholar 

  • Rendall, A.D.: The Newtonian limit for asymptotically flat solutions of the Vlasov–Einstein system. Commun. Math. Phys. 163(1), 89–112 (1994)

    MathSciNet  MATH  Google Scholar 

  • Schaeffer, J.: The classical limit of the relativistic Vlasov–Maxwell system. Commun. Math. Phys. 104(3), 403–421 (1986)

    MathSciNet  MATH  Google Scholar 

  • Schaeffer, J.: Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions. Commun. Partial Differ. Equ. 16(8–9), 1313–1335 (1991)

    MathSciNet  MATH  Google Scholar 

  • Schaeffer, J., Wu, L.: The nonrelativistic limit of relativistic Vlasov–Maxwell system. Math. Methods Appl. Sci. 40(10), 3784–3798 (2017)

    MathSciNet  MATH  Google Scholar 

  • Spohn, H.: Dynamics of Charged Particles and Their Radiation Field. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  • Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970)

    Google Scholar 

  • Strain, R.M.: Global Newtonian limit for the relativistic Boltzmann equation near vacuum. SIAM J. Math. Anal. 42(4), 1568–1601 (2010)

    MathSciNet  MATH  Google Scholar 

  • Taylor, J.H., Fowler, L.A., McCulloch, P.M.: Measurements of general relativistic effects in the binary pulsar psr1913 + 16. Nature 277(5696), 437–440 (1979). 02

    Google Scholar 

  • Xiao, M., Zhang, X.: On global solutions to the Vlasov–Poisson system with radiation damping. Kinet. Relat. Models 11(5), 1183–1209 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Bauer.

Additional information

Communicated by Anthony Bloch.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Some Explicit Derivatives and Integrals

Appendix: Some Explicit Derivatives and Integrals

We point out some formulas that have been used in the previous sections. For \(p\in \mathbb {R}^3\) and \(z\in \mathbb {R}^3\), we have

$$\begin{aligned} \nabla _{z}\left( \left| z\right| ^{-1}\right)&= -\left| z\right| ^{-2}\bar{z} \end{aligned}$$
(6.1a)
$$\begin{aligned} \nabla _{z}\left( \left| z\right| ^{-1}p\right)&= -\left| z\right| ^{-2}\bar{z}\otimes p \end{aligned}$$
(6.1b)
$$\begin{aligned} \nabla _{z}\left( \left| z\right| ^{-1}\bar{z}(\bar{z}\cdot p)\right)&= \left| z\right| ^{-2}\left( -3(\bar{z}\cdot p)\bar{z}\otimes \bar{z} +(\bar{z}\cdot p)\,\mathrm{id}+\bar{z}\otimes p\right) \end{aligned}$$
(6.1c)
$$\begin{aligned} \nabla _{z}z&= \mathrm{id}\end{aligned}$$
(6.1d)
$$\begin{aligned} \nabla _{z}\left( \left| z\right| ^{-1}\bar{z}\left( \bar{z}\cdot p\right) ^2\right)&= \left| z\right| ^{-2}\left( -4\bar{z}\otimes \bar{z} \left( \bar{z}\cdot p\right) ^2+\left( \bar{z}\cdot p\right) ^2\,\mathrm{id}+2\left( \bar{z}\cdot p\right) \bar{z}\otimes p\right) \end{aligned}$$
(6.1e)
$$\begin{aligned} \nabla _{z}\left( \left| z\right| ^{-1} \left( \bar{z}\cdot p\right) p\right)&= \left| z\right| ^{-2} \left( -2\bar{z}\otimes p \left( \bar{z}\cdot p\right) +p\otimes p\right) \end{aligned}$$
(6.1f)
$$\begin{aligned} \nabla _{z}\left( \left| z\right| ^{-1}\bar{z}\right)&= \left| z\right| ^{-2}\left( -2\bar{z}\otimes \bar{z}+\mathrm{id}\right) \end{aligned}$$
(6.1g)
$$\begin{aligned} \nabla _{z}\bar{z}&=\left| z\right| ^{-1}\left( -\bar{z}\otimes \bar{z}+\mathrm{id}\right) \end{aligned}$$
(6.1h)
$$\begin{aligned} \nabla _{z}\left( \bar{z}(\bar{z}\cdot p)\right)&= \left| z\right| ^{-1} \left( -2\bar{z}\otimes \bar{z}(\bar{z}\cdot p) + \left( \bar{z}\cdot p\right) \,\mathrm{id}+\bar{z}\oplus p\right) \end{aligned}$$
(6.1i)

For \(z\in \mathbb {R}^3\) and \(r>0\), an elementary calculation yields

$$\begin{aligned} \int _{|\omega |=1}|z-r\omega |^{-1}\,d\omega =\left\{ \begin{array}{ccc} 4\pi r^{-1} &{}\ \ : &{}\ \ r\ge |z| \\ 4\pi |z|^{-1} &{}\ \ : &{} \ \ r\le |z| \end{array}\right. . \end{aligned}$$
(6.2a)

Differentiation with respect to z gives

$$\begin{aligned} \int _{|\omega |=1}|z-r\omega |^{-3}(z-r\omega )\,d\omega =\left\{ \begin{array}{ccc} 0 &{}\ \ : &{} \ \ r>|z| \\ 4\pi |z|^{-2}\bar{z} &{}\ \ : &{}\ \ r<|z| \end{array}\right. . \end{aligned}$$

Similarly,

$$\begin{aligned} \int _{|\omega |=1}|z-r\omega |\,d\omega =\left\{ \begin{array}{ccc} 4\pi r+\frac{4\pi }{3}z^2 r^{-1} &{}\ \ :&{}\ \ r\ge |z| \\ 4\pi |z|+\frac{4\pi }{3}r^2 |z|^{-1} &{}\ \ :&{}\ \ r\le |z| \end{array}\right. , \end{aligned}$$

and thus by differentiation,

$$\begin{aligned} \int _{|\omega |=1}|z-r\omega |^{-1}(z-r\omega )\,d\omega =\left\{ \begin{array}{ccc} \frac{8\pi }{3r}\,z &{}\ \ :&{}\ \ r>|z| \\ 4\pi \bar{z} -\frac{4\pi }{3}r^2|z|^{-2}\bar{z} &{}\ \ :&{}\ \ r<|z| \end{array}\right. . \end{aligned}$$
(6.2b)

Finally, for \(z\in \mathbb {R}^3\setminus \{0\}\), also

$$\begin{aligned} \int |z-v|^{-1}|v|^{-3}v\,dv=2\pi \bar{z} \end{aligned}$$
(6.2c)

can be computed.

At last, we shall prove formulae (3.13)–(3.15). Using charge conservation \(\partial _t \rho _0+\nabla \cdot j_0=0\) and integration by parts, we find

$$\begin{aligned} \dot{D}_0(t)=\int j_0 (t, x)\, dx=D^{[1]}_0(t)\,. \end{aligned}$$

Exploiting the Vlasov equation (VP) and integration by parts again leads to

$$\begin{aligned} \ddot{D}_0(t)=\dot{D}^{[1]}_0(t)=\int E_0(t, x) (f_0^+(t, x) +f^-_0(t, x))\,dx=D^{[2]}_0(t)\,. \end{aligned}$$

With regard to the third time derivative, we use the notation \(E_0^{\pm }=-\int \left| z\right| ^{-2}\bar{z}\rho _0^{\pm }\,dz\) and compute using the transformations \(y=x+z\) and \(w=x-y\)

$$\begin{aligned} \dot{D}^{[2]}_0(t)= & {} \partial _t \int (E_0^+-E_0^-)(\rho _0^++\rho _0^-)(t, x)\,dx\\= & {} \iint \left( \nabla _z \left| z\right| ^{-1}\right) (\partial _t \rho _0^+ -\partial _t \rho _0^-)(t, x+z) (\rho _0^++\rho _0^-)(t, x)\,dz\,dx\\&+\int (E_0^+-E_0^-)(\partial _t\rho _0^++\partial _t\rho _0^-)(t, x)\,dx\\= & {} \iint \left( \nabla _y\left| y-x\right| ^{-1}\right) (\rho _0^++\rho _0^-)(t, x) (\partial _t \rho _0^+-\partial _t \rho _0^-)(t, y)\,dx\,dy\\&+\int (E_0^+-E_0^-)(\partial _t\rho _0^++\partial _t\rho _0^-)(t, x)\,dx\\= & {} \iint \left( -\nabla _w\left| w\right| ^{-1}\right) (\rho _0^++\rho _0^-)(t, w+y) (\partial _t \rho _0^+-\partial _t \rho _0^-)(t, y)\,dw\,dy\\&+\int (E_0^+-E_0^-)(\partial _t\rho _0^++\partial _t\rho _0^-)(t, x)\,dx\\= & {} -\int (E_0^++E_0^-)(\partial _t\rho _0^+-\partial _t\rho _0^-)(t, y)\,dy\\&+\int (E_0^+-E_0^-)(\partial _t\rho _0^++\partial _t\rho _0^-)(t, x)\,dx\\= & {} 2\int (E_0^+\partial _t \rho _0^{-}-E_0^-\partial _t \rho _0^+)(t, x)\,dx\,. \end{aligned}$$

Using charge conservation \(\partial _t\rho _0^{\pm }+\nabla \cdot j_0^{\pm } = 0\) and partial integration, we, e.g., compute

$$\begin{aligned} \int E_0^+\,\partial _t\rho _0^-\,dx&= -\int E^+ \nabla \cdot j_0^-\,dx =\iint \frac{z}{\left| z\right| ^3}\rho _0^+(x+z)\nabla _x\cdot j_0^-(x)\,dz\,dx\\&=-\iint \frac{z}{\left| z\right| ^3}\left( \nabla _x\rho _0^+ (x+z) \cdot j_0^-(x)\right) \,dz\,dx\\&=\int \left( -\int \frac{z}{\left| z\right| ^3}\otimes \nabla _z\rho _0^+ (x+z)\,dz \right) j_0^-(x)\,dx\,. \end{aligned}$$

Now, we have a closer look onto the inner integral: Using integration by parts and principal values, we find

$$\begin{aligned} H^+(t, x)&:= -\int \frac{z}{\left| z\right| ^3}\otimes \nabla _z\rho _0^+(x+z)\,dz\\&=-\lim _{\eta \rightarrow 0}\int _{\left| z\right|>\eta }\frac{z}{\left| z\right| ^3} \otimes \nabla _z\rho _0^+(x+z)\,dz\\&=\lim _{\eta \rightarrow 0}\left( \int _{\left| z\right| >\eta } \left( -3\left| z\right| ^{-5}z\otimes z+\left| z\right| ^{-3}\mathrm{id}\right) \rho _0^+(t, x+z)\,dz\right. \\&\quad \qquad \left. +\eta ^{-4}\int _{\left| z\right| =\eta }z \otimes z \rho _0^+(t, x+z)\,ds(z)\right) \\&= \oint \left| z\right| ^{-3}\left( -3\bar{z}\otimes \bar{z}+\mathrm{id}\right) \rho _0^+(t, x+z)\,dz +\frac{4\pi }{3}\rho _0^+(t, x)\,. \end{aligned}$$

Note that the kernel \(H(z)=-3\bar{z}\otimes \bar{z}+\mathrm{id}\) is bounded on \(\mathbb {R}^3{\setminus }\{0\}\), is homogeneous of degree zero and satisfies \(\int _{|z|=1}K(z)\,d\sigma (z)=0\). Thus, using the Calderón–Zygmund inequality, \(H^+\) is well defined for smooth functions \(\rho _0^+\) with compact support and for \(1<p<\infty \) can be extended to a bounded linear operator mapping \(L^p(\mathbb {R}^3)\) to \(L^p(\mathbb {R}^3)\), see Stein (1970). With regard to the boundary integral, note that z / |z| is the inner normal. Furthermore,

$$\begin{aligned} \int _{|{z}|=\eta }z_iz_j\, ds(z)=0 \end{aligned}$$

if \(i\ne j\) and

$$\begin{aligned} \int _{|{z}|=\eta }z_i^2\, ds(z)=\frac{1}{3}\int _{|{z}|=\eta }| {z}|^2\, ds(z)=\frac{4\pi }{3}\eta ^4\,. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, S. A Post-Newtonian Expansion Including Radiation Damping for a Collisionless Plasma. J Nonlinear Sci 30, 487–536 (2020). https://doi.org/10.1007/s00332-019-09580-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-019-09580-1

Keywords

Mathematics Subject Classification

Navigation