Skip to main content
Log in

Synchronization Conditions of a Mixed Kuramoto Ensemble in Attractive and Repulsive Couplings

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We study the emergent dynamics of a mixed Kuramoto ensemble in the presence of both attractive and repulsive coupling strengths. To be precise, we consider coupled Kuramoto-type systems consisting of two ensembles in which the oscillators in the same group interact attractively with a positive intra-group coupling strength, whereas the oscillators in the different group communicate repulsively with a negative inter-group coupling strength. For the modeling perspective of the Kuramoto model (KM for brevity), two types of systems are treated in this paper: an attractive–repulsive inertial KM–KM and an attractive–repulsive KM–KM. For these two models, we provide sufficient frameworks leading to complete bi-polar synchronization in which asymptotic configuration tends to a bi-polar state. Our estimates mainly rely on the gradient-like flow formulation and the energy estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acebron, J.A., Bonilla, L.L., Pérez Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys 77, 137–185 (2005)

    Article  Google Scholar 

  • Albi, G., Bellomo, N., Fermo, L., Ha, S..-Y.., Pareschi, L., Poyato, D..D.., Soler, J.: Vehicular traffic, crowds, and swarms. On the kinetic theory approach towards research perspectives. Math. Models Methods Appl. Sci 29, 1901–2005 (2019)

    Article  MathSciNet  Google Scholar 

  • Albi, G., Pareschi, L.: Modeling of self-organized systems interacting with a few individuals: from microscopic to macroscopic dynamics. Appl. Math. Lett. 26, 397–401 (2013)

    Article  MathSciNet  Google Scholar 

  • Albi, G., Pareschi, L.: Binary interaction algorithms for the simulation of flocking and swarming dynamics. Multiscale Model. Simul. 11, 1–29 (2013)

    Article  MathSciNet  Google Scholar 

  • Barbǎlat, I.: Systems of differential equations of nonlinear oscillations. Rev. Math. Pures Appl. 4, 262–270 (1959)

  • Bellomo, N., Ha, S..-Y..: A quest toward a mathematical theory of the dynamics of swarms. Math. Models Methods Appl. Sci. 27, 745–770 (2017)

    Article  MathSciNet  Google Scholar 

  • Bronski, J., Deville, L., Park, M.J.: Fully synchronous solutions and the synchronization phase transition for the finite-\(N\) Kuramoto model. Chaos 22, 033133 (2012)

    Article  MathSciNet  Google Scholar 

  • Buck, J., Buck, E.: Biology of synchronous flashing of fireflies. Nature 211, 562–564 (1966)

    Article  Google Scholar 

  • Burger, M., Haskovec, J., Wolfram, M.-T.: Individual based and mean-field modeling of direct aggregation. Phys. D 260, 145–158 (2013)

    Article  MathSciNet  Google Scholar 

  • Choi, Y.-P., Ha, S.-Y., Jung, S., Kim, Y.: Asymptotic formation and orbital stability of phase locked states for the Kuramoto model. Phys. D 241, 735–754 (2012)

    Article  MathSciNet  Google Scholar 

  • Choi, Y.-P., Ha, S.-Y., Morales, J.: Emergent dynamics of the Kuramoto ensemble under the effect of inertia. Discrete Contin. Dyn. Syst. 38, 4875–4913 (2018)

    Article  MathSciNet  Google Scholar 

  • Choi, Y.-P., Ha, S.-Y., Noh, S.E.: Remarks on the nonlinear stability of the Kuramoto model with inertia. Quart. Appl. Math. 73, 391–399 (2015)

    Article  MathSciNet  Google Scholar 

  • Choi, Y.-P., Ha, S.-Y., Yun, S.-B.: Complete synchronization of Kuramoto oscillators with finite inertia. Phys. D 240, 32–44 (2011)

    Article  MathSciNet  Google Scholar 

  • Choi, Y.-P., Li, Z.: Synchronization of nonuniform Kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity 32, 559–583 (2019)

    Article  MathSciNet  Google Scholar 

  • Choi, Y.-P., Li, Z., Ha, S.-Y., Xue, X., Yun, S.-B.: Complete entrainment of Kuramoto oscillators with inertia on networks via gradient-like flow. J. Differ. Equ. 257, 2225–2255 (2014)

    Article  MathSciNet  Google Scholar 

  • Chopra, N., Spong, M.W.: On exponential synchronization of Kuramoto oscillators. IEEE Trans. Automatic Control 54, 353–357 (2009)

    Article  MathSciNet  Google Scholar 

  • Dong, J.-G., Xue, X.: Synchronization analysis of Kuramoto oscillators. Commun. Math. Sci. 11, 465–480 (2013)

    Article  MathSciNet  Google Scholar 

  • Dörfler, F., Bullo, F.: Synchronization in complex networks of phase oscillators: a survey. Automatica 50, 1539–1564 (2014)

    Article  MathSciNet  Google Scholar 

  • Dörfler, F., Bullo, F.: On the critical coupling for Kuramoto oscillators. SIAM. J. Appl. Dyn. Syst 10, 1070–1099 (2011)

    Article  MathSciNet  Google Scholar 

  • Ermentrout, G.B.: An adaptive model for synchrony in the firefly Pteroptyx malaccae. J. Math. Biol. 29, 571–585 (1991)

    Article  MathSciNet  Google Scholar 

  • Fang, D., Ha, S.-Y., Jin, S.: Emergent behaviors of the Cucker-Smale ensemble under attractive-repulsive couplings and Rayleigh frictions. Math. Models Methods Appl. Sci. 29, 1349–1385 (2019)

    Article  MathSciNet  Google Scholar 

  • Fornasier, M., Haskovec, J., Vybiral, J.: Particle systems and kinetic equations modeling interacting agents in high dimension. Multiscale Model. Simul. 9, 1727–1764 (2011)

    Article  MathSciNet  Google Scholar 

  • Ha, S.-Y., Lee, J., Li, Z.: Emergence of local synchronization in an ensemble of heterogeneous Kuramoto oscillators. Netw. Heterog. Media 12, 1–24 (2017)

    Article  MathSciNet  Google Scholar 

  • Ha, S.-Y., Lee, J., Li, Z.: Synchronous harmony in an ensemble of Hamiltonian mean-field oscillators and inertial Kuramoto oscillators. Chaos 28, 113112 (2018)

    Article  MathSciNet  Google Scholar 

  • Ha, S..-Y.., Kim, Y..-H.., Morales, J., Park, J..: Emergence of phase concentration for the Kuramoto-Sakaguchi equation. Phys. D 401, 132154 (2020)

    Article  MathSciNet  Google Scholar 

  • Haraux, A., Jendoubi, M.A.: Convergence of solutions of second-order gradient-like systems with analytic nonlinearities. J. Differ. Equ. 144, 313–320 (1998)

    Article  MathSciNet  Google Scholar 

  • Hong, H., Strogatz, S.H.: Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators. Phys. Rev. Lett. 106, (2011)

  • Hong, H., Strogatz, S.H.: Conformists and contrarians in a Kuramoto model with identical natural frequencies. Phys. Rev. E 84, 046202 (2011)

    Article  Google Scholar 

  • Hong, H., Strogatz, S.H.: Mean-field behavior in coupled oscillators with attractive and repulsive interactions. Phys. Rev. E 85, 056210 (2012)

    Article  Google Scholar 

  • Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators. In: International symposium on mathematical problems in theoretical physics, pp. 420–422 (1975)

  • Li, Z., Liu, Y., Xue, Xiapoing: Convergence and stability of generalized gradient systems by Lojasiewicz inequality with application in continuum Kuramoto model. Discrete Contin. Dyn. Syst 39, 345–367 (2019)

    Article  MathSciNet  Google Scholar 

  • Li, Z., Xue, X.: Convergence of analytic gradient-type systems with periodicity and its applications in Kuramoto model. Appl. Math. Lett. 90, 194–201 (2019)

    Article  MathSciNet  Google Scholar 

  • Li, Z., Xue, X., Yu, D.: Synchronization and transient stability in power grids based on Lojasiewicz inequalities. SIAM J. Control Optim. 52, 2482–2511 (2014)

    Article  MathSciNet  Google Scholar 

  • Lohe, M.: Conformist-contrarian interactions and amplitude dependence in the Kuramoto model. Phys. Scr. 89, 115202 (2014)

    Article  Google Scholar 

  • Morales, J., Poyato, D.: On the trend to global equilibrium for Kuramoto oscillators. Archived as arXiv:1908.07657

  • Ott, E., Antonsen, T.M.: Low dimensional behavior of large systems of globally coupled oscillators. Chaos 18, 037113 (2008)

    Article  MathSciNet  Google Scholar 

  • Park, J., Poyato, D., Soler, J.: Filippov trajectories and clustering in the Kuramoto model with singular couplings. Archived as arXiv:1809.04307

  • Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  • Pluchino, A., Latora, V., Rapisarda, A.: Changing opinions in a changing world: a new perspective in sociophysics. Int. J. Mod. Phys. C 16, 515–531 (2005)

    Article  Google Scholar 

  • Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000)

    Article  MathSciNet  Google Scholar 

  • van Hemmen, J.L., Wreszinski, W.F.: Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators. J. Stat. Phys. 72, 145–166 (1993)

    Article  Google Scholar 

  • Vicsek, T., Zefeiris, A.: Collective motion. Phys. Rep. 517, 71–140 (2012)

    Article  Google Scholar 

  • Ward, J.B.: Equivalent circuits for power-flow studies. Trans. Am. Inst. Electr. Eng. 68, 373–382 (2009)

    Article  Google Scholar 

  • Watanabe, S., Strogatz, S.H.: Constants of motion for superconducting Josephson arrays. Phys. D 74, 197–253 (1994)

    Article  Google Scholar 

  • Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15–42 (1967)

    Article  Google Scholar 

Download references

Acknowledgements

The work of S.-Y. Ha was supported by the National Research Foundation of Korea (NRF-2017R1A2B2001864), and the work of S. E. Noh was supported by the National Research Foundation of Korea (NRF-2017R1C1B5018312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dohyun Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Mary Pugh.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Proof of Theorem 4

A Proof of Theorem 4

Recall that our goal is to establish

$$\begin{aligned} \lim _{t \rightarrow \infty }\Big \{ \Vert {\dot{\varXi }}(t)\Vert + \Vert \varXi (t)-\varXi ^\text {e}\Vert \Big \} = 0. \end{aligned}$$

However, since we have already established the complete synchronization in Proposition 1, we have

$$\begin{aligned} \lim _{t \rightarrow \infty } \Vert {\dot{\varXi }}(t)\Vert = 0. \end{aligned}$$

Hence, it suffices to show that there exists \(\varXi ^\text {e} \in {\mathcal {S}}\) such that

$$\begin{aligned} \lim _{t \rightarrow \infty } \Vert \varXi (t)-\varXi ^\text {e}\Vert = 0. \end{aligned}$$
(41)

The proof of (41) will split into two parts. Let \((\varXi _0,\varUpsilon _0) \in {\mathbb {R}}^{2N} \times {\mathbb {R}}^{2N}\) be the initial data such that the solution of (8) is global and bounded, and we define the \(\omega \)-limit set of \((\varXi _0,\varUpsilon _0)\) by

$$\begin{aligned} \omega (\varXi _0,\varUpsilon _0) := \{a \in {\mathbb {R}}^{2 N}:~\exists t_n \rightarrow \infty ~\text{ such } \text{ that }~\varXi (t_n) \rightarrow a~\text{ as }~n \rightarrow \infty \}. \end{aligned}$$

As a consequence of zero convergence for \(\Vert {\dot{\varXi }}\Vert \), we have

$$\begin{aligned} \omega (\varXi _0,\varUpsilon _0) \in {\mathcal {S}}. \end{aligned}$$

Let \(\varXi ^\text {e} \in \omega (\varXi _0,\varOmega _0)\), and we may assume that

$$\begin{aligned} \varXi ^\text {e} = 0, \quad V(0)=0 \quad \text{ and } \quad \nabla V_\varXi (0) = 0. \end{aligned}$$

Moreover, we set

$$\begin{aligned} {{\widetilde{\varXi }}} = \varXi -\varXi ^\text {e} \quad \text{ and } \quad \widetilde{V}({{\widetilde{\varXi }}}) = V({{\widetilde{\varXi }}} + \varXi ^\text {e}) - V(\varXi ^\text {e}). \end{aligned}$$

\(\bullet \) (Step A: zero convergence of E): we define an energy-like function E(t) as follows:

$$\begin{aligned} E(t) := \frac{1}{2} \Vert \sqrt{M} {\dot{\varXi }}(t)\Vert ^2 + V(\varXi (t)) + \varepsilon \langle \nabla V(\varXi (t)), \sqrt{M} {\dot{\varXi }}(t) \rangle , \end{aligned}$$

where \(\varepsilon >0\) is a positive constant to be determined later. In what follows, we simply write \(\nabla V\) for \(\nabla _\varXi V\) and define the maximum and minimum for \(\{m_j\}\):

$$\begin{aligned} m^* := \max \{m_1, \ldots , m_N\}, \quad m_* := \min \{m_1, \ldots , m_N\}, \quad {\widetilde{M}} = \text {diag}\{m_1, \ldots , m_N\}. \end{aligned}$$

Then, we observe

$$\begin{aligned} \frac{\text {d}E(t)}{\text {d}t}&= \langle \sqrt{M}{\dot{\varXi }}(t), \sqrt{M}{\dot{\varXi }}(t) \rangle + \langle \nabla V(\varXi (t)), {\dot{\varXi }}(t) \rangle + \varepsilon \langle \nabla V(\varXi (t)), \sqrt{M} {\ddot{\varXi }}(t) \rangle \\&\quad + \varepsilon \langle \sqrt{M} \nabla ^2 V(\varXi (t)) {\dot{\varXi }}(t), {\dot{\varXi }}(t) \rangle \\&= \langle {\dot{\varXi }}(t), M {\dot{\varXi }}(t) \rangle + \langle {\dot{\varXi }}(t),\nabla V(\varXi (t)) \rangle + \varepsilon \langle \nabla _\varTheta V(\varXi (t)), \sqrt{{\widetilde{M}}} {\ddot{\varTheta }}(t) \rangle \\&\quad + \varepsilon \langle \sqrt{M} \nabla ^2 V(\varXi (t)) {\dot{\varXi }}(t), {\dot{\varXi }}(t) \rangle \\&= \langle \varXi (t), - {\dot{\varXi }}(t) \rangle + \varepsilon \langle \sqrt{{\widetilde{M}}}^{-1}\nabla _\varTheta V(\varXi (t)), {\widetilde{M}} {\ddot{\varTheta }}(t) \rangle + \varepsilon \langle \sqrt{M} \nabla ^2 V(\varXi (t)) {\dot{\varXi }}(t), {\dot{\varXi }}(t) \rangle \\&=-\Vert {\dot{\varXi }}(t)\Vert ^2 - \varepsilon \langle \sqrt{\widetilde{M}}^{-1}\nabla _\varTheta V(\varXi (t)), {\dot{\varTheta }}(t) + \nabla _\varTheta V(\varXi (t)) \rangle \\&\quad + \varepsilon \langle \sqrt{M} \nabla ^2 V(\varXi (t)) {\dot{\varXi }}(t), {\dot{\varXi }}(t) \rangle . \end{aligned}$$

We choose \(\varepsilon \) sufficiently small so that

$$\begin{aligned} \varepsilon \sqrt{m^*} \Vert \nabla ^2 V(\varXi )\Vert _\infty < \frac{1}{2}. \end{aligned}$$

Then, we have

$$\begin{aligned} \frac{\text {d}E(t)}{\text {d}t}&\le -\frac{1}{2} \Vert {\dot{\varXi }}(t)\Vert ^2 - \frac{\varepsilon }{\sqrt{m^*}}\Vert \nabla _\varTheta V(\varXi (t)\Vert ^2 -\varepsilon \langle \sqrt{{\widetilde{M}}}^{-1} \nabla _\varTheta V(\varXi (t)), {\dot{\varTheta }}(t) \rangle \\&\le -\frac{1}{2} \Vert {\dot{\varXi }}(t)\Vert ^2 - \frac{\varepsilon }{\sqrt{m^*}}\Vert \nabla _\varTheta V(\varXi (t)\Vert ^2 + \frac{ \varepsilon }{\sqrt{m_*}} \Vert \nabla _\varTheta V(\varXi (t))\Vert \Vert {\dot{\varTheta }}(t)\Vert \\&= -\frac{1}{2} \Vert {\dot{\varTheta }}(t)\Vert ^2 -\frac{1}{2} \Vert \nabla _{\overline{\varPhi }}V(\varXi (t))\Vert ^2- \frac{\varepsilon }{\sqrt{m^*}}\Vert \nabla _\varTheta V(\varXi (t))\Vert ^2 \\&\quad + \frac{ \varepsilon }{\sqrt{m_*}} \Vert \nabla _\varTheta V(\varXi (t))\Vert \Vert {\dot{\varTheta }}(t)\Vert \\&\le -\frac{1}{2} \Vert {\dot{\varTheta }}(t)\Vert ^2 - \frac{\varepsilon }{\sqrt{m^*}}\Vert \nabla V(\varXi (t))\Vert ^2 + \frac{ \varepsilon }{\sqrt{m_*}} \Vert \nabla V(\varXi (t))\Vert \Vert {\dot{\varTheta }}(t)\Vert . \end{aligned}$$

It is easy to see that there exists \(\varepsilon _0\) such that for all \(\varepsilon \in [0,\varepsilon _0)\),

$$\begin{aligned} -\frac{\text {d}E(t)}{\text {d}t} \ge \varepsilon (\Vert {\dot{\varTheta }}\Vert + \Vert \nabla V(\varXi )\Vert )^2,\quad t>0. \end{aligned}$$
(42)

Thus, we see

$$\begin{aligned} \frac{\text {d}E(t)}{\text {d}t} \le 0, \end{aligned}$$

and since \(0 \in \omega (\varXi _0,\varUpsilon _0)\), we can derive

$$\begin{aligned} E(t) \downarrow 0 \quad \text{ as }~ t \rightarrow \infty . \end{aligned}$$
(43)

\(\bullet \) (Step B: finite length of the phase vector \(\varXi \)): Let \(\rho \) be the Lojasiewicz exponent of V in Theorem 2. We use the Cauchy-Schwarz inequality to have

$$\begin{aligned} \begin{aligned} E(t)^{1-\rho }&= \left( \frac{1}{2} \Vert \sqrt{M}{\dot{\varXi }}\Vert ^2 + V(\varXi ) + \varepsilon \langle \nabla V(\varXi ), \sqrt{M}{\dot{\varXi }} \rangle \right) ^{1-\rho } \\&= \left( \frac{1}{2} \Vert \sqrt{{\widetilde{M}}}{\dot{\varTheta }}\Vert ^2 + V(\varXi ) + \varepsilon \langle \nabla _\varTheta V(\varXi ), \sqrt{{\widetilde{M}}}{\dot{\varTheta }} \rangle \right) ^{1-\rho }\\&\le \left( \frac{m^*}{2}\right) ^{1-\rho }\Vert {\dot{\varTheta }}\Vert ^{2(1-\rho )} + |V(\varXi )|^{1-\rho } + (m^*)^{\frac{1-\rho }{2}} \Vert \nabla _\varTheta V(\varXi )\Vert ^{1-\rho }\Vert {\dot{\varTheta }}\Vert ^{1-\rho }. \end{aligned} \end{aligned}$$
(44)

We now apply Young’s inequality to find

$$\begin{aligned}&\Vert \nabla _\varTheta V(\varXi )\Vert ^{1-\rho }\Vert {\dot{\varTheta }}\Vert ^{1-\rho } \le (1-\rho )^{1-\rho }\Vert \nabla _\varTheta V(\varXi )\Vert \\&+ \rho ^{1-\rho } \Vert {\dot{\varTheta }}\Vert ^{\frac{1-\rho }{\rho }} \le \Vert \nabla _\varTheta V(\varXi )\Vert + \Vert {\dot{\varTheta }}\Vert ^{\frac{1-\rho }{\rho }} . \end{aligned}$$

Thus, (44) becomes

$$\begin{aligned} E(t)^{1-\rho } \le \left( \frac{m^*}{2}\right) ^{1-\rho } \Vert {\dot{\varTheta }}\Vert ^{2(1-\rho )} + |V(\varXi )|^{1-\rho } + (m^*)^{\frac{1-\rho }{2}} (\Vert \nabla _\varTheta V(\varXi )\Vert + \Vert {\dot{\varTheta }}\Vert ^{\frac{1-\rho }{\rho }} ). \end{aligned}$$
(45)

Since \(0= \varXi ^\text {e} \in \omega (\varXi _0,\varUpsilon _0)\), we can choose a sequence \(\{t_n\}\) such that \(\varXi (t_n) \rightarrow 0\) as \(n \rightarrow \infty \). Then, zero convergence of \(\Vert {\dot{\varXi }}(t)\Vert \) and (43) yield that for any \(r>0\), there exists \(n_0 >0\) such that

$$\begin{aligned}&\Vert \varXi (t_n)\Vert< \frac{r}{2}, \quad \frac{C}{\rho \varepsilon }E(t_n)^\rho < \frac{r}{2} \quad \text{ for }~n \ge n_0, \end{aligned}$$
(46)
$$\begin{aligned}&\left( \frac{m^*}{2}\right) ^{1-\rho }\Vert {\dot{\varXi }}(t)\Vert ^{1-2\rho } + (m^*)^{\frac{1-\rho }{2}}\Vert {\dot{\varXi }}(t)\Vert ^{\frac{1}{\rho }-2} \le 2, \quad \forall t \ge t_{n_0}, \end{aligned}$$
(47)

where C is a positive constant:

$$\begin{aligned} C:= \max \{2, (1+(m^*)^{\frac{1-\rho }{2}}\}. \end{aligned}$$

Note that (46) follows from the zero convergences of \(\Vert \varXi (t_n)\Vert \) and energy-like function E, and (47) follows from the zero convergence of \(\Vert {\dot{\varXi }}\Vert \). We set

$$\begin{aligned} T := \sup \{t\ge t_{n_0}:~\Vert \varXi (s)\Vert < r, \quad \forall s \in [t_{n_0},t]\}. \end{aligned}$$
(48)

Our claim is to prove that \(T=\infty \). By using Lojasiewicz’s inequality in Theorem 2, we obtain from (45) that

$$\begin{aligned} \begin{aligned} E(t)^{1-\rho }&\le \left( \frac{m^*}{2}\right) ^{1-\rho }\Vert {\dot{\varTheta }}\Vert ^{2(1-\rho )} + (m^*)^{\frac{1-\rho }{2}}\Vert {\dot{\varTheta }}\Vert ^{\frac{1-\rho }{\rho }} + \left( 1 + (m^*)^{\frac{1-\rho }{2}} \right) \Vert \nabla V(\varXi )\Vert \\&\le 2\Vert {\dot{\varTheta }}\Vert + \left( 1 + (m^*)^{\frac{1-\rho }{2}} \right) \Vert \nabla V(\varXi )\Vert , \qquad t \ge t_{n_0}, \end{aligned} \end{aligned}$$
(49)

where we used (47) for the last inequality. Together with (42) and (49), we find

$$\begin{aligned}&-\frac{\text {d}[E(t)^\rho ]}{\text {d}t} = -\rho {\dot{E}}(t) E(t)^{\rho -1} \ge \frac{\rho \varepsilon (\Vert {\dot{\varTheta }}\Vert + \Vert \nabla V(\varXi )\Vert )^2}{2\Vert {\dot{\varTheta }}\Vert + \left( 1 + (m^*)^{\frac{1-\rho }{2}} \right) \Vert \nabla V(\varXi )\Vert }\nonumber \\&\ge \frac{\rho \varepsilon }{C}(\Vert {\dot{\varTheta }}\Vert + \Vert \nabla V(\varXi )\Vert ). \end{aligned}$$
(50)

We integrate (50) on the time-interval \((t_{n_0},T)\) to get

$$\begin{aligned} \int _{t_{n_0}}^T \Vert {\dot{\varTheta }}(s)\Vert \,\text {d}s \le \frac{C}{\rho \varepsilon } [E(t_{n_0})]^\rho . \end{aligned}$$
(51)

If \(T<\infty \), we have

$$\begin{aligned} \Vert \varTheta (T)\Vert \le \int _{t_{n_0}}^T \Vert {\dot{\varTheta }}(s)\Vert \text {d}s + \Vert \varTheta (t_{n_0})\Vert . \end{aligned}$$

Then, it follows from (46) and (51) that \(\Vert \varTheta (T)\Vert <r\). This contradicts (48). Hence, we finally have

$$\begin{aligned} T=\infty . \end{aligned}$$

The relation (51) with \(T=\infty \) implies that the trajectory \(\varTheta (t)\) has a finite length. Hence, we have that \(\varTheta (t)\) is convergent and indeed, \(\varTheta _e\) is the limit. On the other hand, (50) easily gives

$$\begin{aligned} -\frac{\text {d}[E(t)^\rho ]}{\text {d}t} \ge \frac{\rho \varepsilon }{C}\Vert \nabla _{{{\overline{\varPhi }}}}V(\varXi )\Vert = \frac{\rho \varepsilon }{C} \Vert \dot{{{\overline{\varPhi }}}}\Vert . \end{aligned}$$
(52)

Similarly, we integrate (52) over \((t_{n_0},T=\infty )\) as in (51) to find \({{\overline{\varPhi }}}(t)\) also have a finite length and it converges to \({{\overline{\varPhi }}}_e\). Hence, we conclude that \(\varXi ^\text {e} = (\varTheta _e, {{\overline{\varPhi }}}_e)\) is the limit point of the trajectory \(\varXi (t) = (\varTheta (t),{{\overline{\varPhi }}}(t))\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, SY., Kim, D., Lee, J. et al. Synchronization Conditions of a Mixed Kuramoto Ensemble in Attractive and Repulsive Couplings. J Nonlinear Sci 31, 39 (2021). https://doi.org/10.1007/s00332-021-09699-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-021-09699-0

Keywords

Mathematics Subject Classification

Navigation