Skip to main content
Log in

The Complete Classification of Solutions to the Riemann Problem of the Defocusing Complex Modified KdV Equation

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The complete classification of solutions to the defocusing complex modified KdV equation with step-like initial condition is studied by the finite-gap integration approach and Whitham modulation theory. All kinds of combination solutions consisting of genus-0 regions, genus-1 regions, or genus-2 regions are found by classifying the Riemann invariants. The behaviors of wave breaking in Riemann problem of the defocusing complex modified KdV equation are much richer and more complicated than those in the nonlinear Schrödinger equation. It is demonstrated that a large oscillating region can be composed of four basic genus-1 dispersive shock waves, a case of solution may be consisted of up to six regions, and the plateau, vacuum, rarefaction wave, and dispersive shock wave can coexist in the same solution region. Moreover, the genus-2 region, produced from the collision of two dispersive shock waves, is described detailedly by the genus-2 Whitham equations. The direct numerical simulations on the defocusing complex modified KdV equation show remarkable agreement with the results from Whitham modulation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abenda, S., Grava, T.: Modulation of Camassa–Holm equation and reciprocal transformations. Ann. Inst. Fourier (Grenoble) 55, 1803–1834 (2005)

    Article  MathSciNet  Google Scholar 

  • Ablowitz, M.J., Demirci, A., Ma, Y.P.: Dispersive shock waves in the Kadomtsev–Petviashvili and two dimensional Benjamin-Ono equations. Physica D 333, 84–98 (2016)

    Article  MathSciNet  Google Scholar 

  • Ablowitz, M.J., Cole, J.T., Rumanov, I.: Whitham equations and phase shifts for the Korteweg-de Vries equation. Proc. R. Soc. A 476, 20200300 (2020)

    Article  MathSciNet  Google Scholar 

  • Andreiev, K., Egorova, I., Lange, T.L., Teschl, G.: Rarefaction waves of the Korteweg-de Vries equation via nonlinear steepest descent. J. Differ. Equ. 261(10), 5371–5410 (2016)

    Article  MathSciNet  Google Scholar 

  • Belokolos, E.D., Bobenko, A.I., Enolski, V.Z., Its, A.R., Matveev, V.B.: Algebro-Geometric Approach to Nonlinear Integrable Equations. Springer, New York (1994)

    MATH  Google Scholar 

  • Boutet de Monvel, A., Lenells, J., Shepelsky, D.: The focusing NLS equation with step-like oscillating background: the genus 3 sector. arXiv:2005.02822 (2020)

  • Boutet de Monvel, A., Lenells, J., Shepelsky, D.: The focusing NLS equation with step-like oscillating background: scenarios of long-time asymptotics. Commun. Math. Phys. 383, 893–952 (2021)

    Article  MathSciNet  Google Scholar 

  • Bridges, T.J., Ratliff, D.J.: Nonlinear theory for coalescing characteristics in multiphase Whitham modulation theory. J. Nonlinear Sci. 31, 7 (2021)

    Article  MathSciNet  Google Scholar 

  • Chang, C.H., Yu, C.H., Sheu, T.W.: Long-time asymptotic solution structure of Camassa–Holm equation subject to an initial condition with non-zero reflection coefficient of the scattering data. J. Math. Phys. 57, 103508 (2016)

    Article  MathSciNet  Google Scholar 

  • Congy, T., El, G.A., Hoefer, M.A., Shearer, M.: Nonlinear Schrödinger equations and the universal description of dispersive shock wave structure. Stud. Appl. Math. 142, 241–268 (2019)

    Article  MathSciNet  Google Scholar 

  • Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. 137(2), 295–368 (1993)

    Article  MathSciNet  Google Scholar 

  • Dubrovin, B.A., Novikov, S.P.: Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory. Russ. Math. Surv. 44, 35–124 (1989)

    Article  MathSciNet  Google Scholar 

  • Egorova, I., Michor, J., Teschl, G.: Long-time asymptotics for the toda shock problem: non-overlapping spectra. J. Math. Phys. Anal. Geom. 14(4), 406–451 (2018)

    MathSciNet  MATH  Google Scholar 

  • El, G.A., Geogjaev, V.V., Gurevich, A.V., Krylov, A.L.: Decay of an initial discontinuity in the defocusing NLS hydrodynamics. Physica D 87, 186–192 (1995)

    Article  MathSciNet  Google Scholar 

  • Engquist, B., Lötstedt, P., Sjögreen, B.: Nonlinear fillters for efficient shock computation. Math. Comp. 52, 509–537 (1989)

    Article  MathSciNet  Google Scholar 

  • Flaschka, H., Forest, M.G., McLaughlin, D.W.: Multiphase averaging and the inverse spectral solution of the Korteweg-de Vries equation. Commun. Pure Appl. Math. 33, 739–784 (1980)

    Article  MathSciNet  Google Scholar 

  • Grava, T., Klein, C.: Numerical solution of the small dispersion limit of Korteweg de Vries and Whitham equations. Commun. Pure Appl. Math. 60(11), 1623–1664 (2007)

    Article  MathSciNet  Google Scholar 

  • Grava, T., Minakov, A.: On the long-time asymptotic behavior of the modified Korteweg-de Vries equation with step-like initial data. SIAM J. Math. Anal. 52(6), 5892–5993 (2020)

    Article  MathSciNet  Google Scholar 

  • Gurevich, A.V., Pitaevskii, L.P.: Nonstationary structure of a collisionless shock wave, Sov. Phys. JETP 38, 291–297 (translation from Russian of A.V. Gurevich and L.P.Pitaevskii, Zh. Eksp. Teor. Fiz. 65, 590-604 (1973)) (1974)

  • Hoefer, M.A.: Shock waves in dispersive Eulerian fluids. J. Nonlinear Sci. 24, 525–577 (2014)

    Article  MathSciNet  Google Scholar 

  • Its, A.R., Kotlyarov, V.P.: Explicit formulas for solutions of the Schrödinger nonlinear equation. Doklady Akad.Nauk Ukrainian SSR, ser. A 10, 965–968 (English translation is available at arXiv:1401.4445) (1976)

  • Ivanov, S.K., Kamchatnov, A.M.: Riemann problem for the photon fluid: self-steepening effects. Phys. Rev. A 96, 053844 (2017)

    Article  Google Scholar 

  • Ivanov, S.K., Kamchatnov, A.M., Congy, T., Pavloff, N.: Solution of the Riemann problem for polarization waves in a two-component Bose–Einstein condensate. Phys. Rev. E 96, 062202 (2017)

    Article  MathSciNet  Google Scholar 

  • Kamchatnov, A.M.: Whitham equations in the AKNS scheme. Phys. Lett. A 186, 387–390 (1994)

    Article  MathSciNet  Google Scholar 

  • Kamchatnov, A.M.: New approach to periodic solutions of integrable equations and nonlinear theory of modulational instability. Phys. Rep. 286, 199–270 (1997)

    Article  MathSciNet  Google Scholar 

  • Kamchatnov, A.M.: Nonlinear Periodic Waves and Their Modulations: An Introductory Course. World Scientific Publishing, Singapore (2000)

    Book  Google Scholar 

  • Kamchatnov, A.M., Kuo, Y.H., Lin, T.C., Horng, T.L., Gou, S.C., Clift, R., El, G.A., Grimshaw, R.H.J.: Undular bore theory for the Gardner equation. Phys. Rev. E 86, 036605 (2012)

    Article  Google Scholar 

  • Kodama, Y., Pierce, V.U., Tian, F.R.: On the Whitham equations for the defocusing complex modified KdV equation. SIAM J. Math. Anal. 40(5), 1750–1782 (2008)

    Article  MathSciNet  Google Scholar 

  • Kong, L.Q., Wang, L., Wang, D.S., Dai, C.Q., Wen, X.Y., Xu, L.: Evolution of initial discontinuity for the defocusing complex modified KdV equation. Nonlinear Dyn. 98, 691–702 (2019)

    Article  Google Scholar 

  • Kotlyarov, V.P.: Periodic problem for the Schrödinger nonlinear equation. Voprosy matematicheskoi fiziki i funkcionalnogo analiza, Naukova Dumka, Kiev 1, 121–131 (English translation is available at arXiv:1401.4445) (1976)

  • Kotlyarov, V., Minakov, A.: Dispersive shock wave, generalized Laguerre polynomials, and asymptotic solitons of the focusing nonlinear Schrödinger equation. J. Math. Phys. 60(12), 123501 (2019)

    Article  MathSciNet  Google Scholar 

  • Lax, P., Levermore, C.: The small dispersion limit of the Korteweg-De Vries equation. Commun. Pure Appl. Math. 36(3), 253–290 (1983)

    Article  MathSciNet  Google Scholar 

  • Luke, J.C.: A perturbation method for nonlinear dispersive wave problems. Proc. R. Soc. Lond. Ser. A Math. Phys. 292, 403–412 (1966)

    MathSciNet  MATH  Google Scholar 

  • Pierce, V.U., Tian, F.R.: Self-similar solutions of the non-strictly hyperbolic Whitham equations for the KdV hierarchy. Dyn. Partial Differ. Equ. 4, 263–282 (2007)

    Article  MathSciNet  Google Scholar 

  • Tian, F.R., Ye, J.: On the Whitham equations for the semiclassical limit of the defocusing nonlinear Schrödinger equation. Commun. Pure Appl. Math. 52(6), 655–692 (1999)

    Article  Google Scholar 

  • Whitham, G.B.: Nonlinear dispersive waves. Proc. R. Soc. Lond. Ser. A 283, 238–261 (1965)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the referees for their valuable suggestions. The work of DSW is supported by National Natural Science Foundation of China under Grant No. 11971067, the Fundamental Research Funds for the Central Universities under Grant No. 2020NTST22, and the Beijing Great Wall Talents Cultivation Program under Grant No. CIT&TCD20180325. The work of ZX is supported by Beijing outstanding talents training fund youth top individual project and Premium Funding Project for Academic Human Resources Development in Beijing Union University under Grant No. BPHR2020EZ01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deng-Shan Wang.

Additional information

Communicated by Peter Miller.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, DS., Xu, L. & Xuan, Z. The Complete Classification of Solutions to the Riemann Problem of the Defocusing Complex Modified KdV Equation. J Nonlinear Sci 32, 3 (2022). https://doi.org/10.1007/s00332-021-09766-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-021-09766-6

Keywords

Mathematics Subject Classification

Navigation