Skip to main content
Log in

Synthetic Biology

  • Tutorial on Programming Natural Systems: Part 2. Programming Cells
  • Published:
New Generation Computing Aims and scope Submit manuscript

Abstract

Recent progress in various related fields has engendered a new style of biology, named Synthetic Biology, which utilizes concepts from modern engineering to emulate specific cellular functions and their functional combinations. This paper presents an introduction to Synthetic Biology from various viewpoints. First, we survey the concepts and tools from Systems Science along with several issues on social impact. Then, we discuss the recent progress in Molecular Biology that supports Synthetic Biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elf, J. and Ehrenberg, M., “Fast evaluation of fluctuations in biochemical networks with the linear noise approximation,” Genome Res, 13, 11, pp. 2475–2484, 2003.

    Article  Google Scholar 

  2. Becskei, A. and Serrano, L., “Engineering stability in gene networks by autoregulation,” Nature, 405, 6786, pp. 590–593, 2000.

    Article  Google Scholar 

  3. Gardner, T. S., Cantor, C. R. and Collins, J. J., “Construction of a genetic toggle switch in Escherichia coli,” Nature, 403, 6767, pp. 339–342, 2000.

    Article  Google Scholar 

  4. Elowitz, M. B. and Leibler, S., “A synthetic oscillatory network of transcriptional regulators,” Nature, 403, 6767, pp. 335–338, 2000.

    Article  Google Scholar 

  5. http://bbf.openware.org.

  6. http://www.pipra.org.

  7. http://www.cambia.org.

  8. Ayukawa, S., Kobayashi, A., Nakashima, Y., Takagi, H., Hamada, S., Uchiyama, M., Yugi, K., Murata, S., Sakakibara, Y., Hagiya, M., Yamamura, M. and Kiga., D., “SYANAC: SYnthetic biological Automaton for Noughts And Crosses,” IET Synthetic Biology, 1, 1-2, pp. 64–67, 2007.

    Article  Google Scholar 

  9. Itaya, M., Fujita, K., Kuroki, A. and Tsuge, K., “Bottom-up genome assembly using the Bacillus subtilis genome vector,” Nat Methods, 5, 1, pp. 41–43, 2008.

    Article  Google Scholar 

  10. Cello, J., Paul, A. V. and Wimmer, E., “Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template,” Science, 297, 5583, pp. 1016–1018, 2002.

    Article  Google Scholar 

  11. Smith, H. O., Hutchison, C. A., 3rd, Pfannkoch, C. and Venter, J. C., “Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides,” Proc. Natl Acad Sci U S A, 100, 26, pp. 15440–15445, 2003.

    Google Scholar 

  12. Tian, J., Gong, H., Sheng, N., Zhou, X., Gulari, E., Gao, X. and Church, G., “Accurate multiplex gene synthesis from programmable DNA microchips,” Nature, 432, 7020, pp. 1050–1054, 2004.

    Article  Google Scholar 

  13. http://www.blueheronbio.com/company/press/mar26-07.html.

  14. Gibson, D. G., Benders, G. A., Andrews-Pfannkoch, C., Denisova, E. A., Baden-Tillson, H., Zaveri, J., Stockwell, T. B., Brownley, A., Thomas, D. W., Algire, M. A., Merryman, C., Young, L., Noskov, V. N., Glass, J. I., Venter, J. C., Hutchison, C. A., 3rd and Smith, H. O., “Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome,” Science, 319, 5867, pp. 1215–1220, 2008.

  15. Yu, W., Sato, K., Wakabayashi, M., Nakaishi, T., Ko-Mitamura, E. P., Shima, Y., Urabe, I. and Yomo, T., “Synthesis of functional protein in liposome,” J Biosci Bioeng, 92, 6, pp. 590–593, 2001.

    Article  Google Scholar 

  16. Nomura, S. M., Tsumoto, K., Hamada, T., Akiyoshi, K., Nakatani, Y. and Yoshikawa, K., “Gene expression within cell-sized lipid vesicles,” Chembiochem, 4, 11, pp. 1172–1175, 2003.

    Article  Google Scholar 

  17. Noireaux, V. and Libchaber, A., “A vesicle bioreactor as a step toward an artificial cell assembly,” Proc. Natl Acad Sci U S A, 101, 51, pp. 17669–17674, 2004.

    Article  Google Scholar 

  18. Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K. and Ueda, T., “Cell-free translation reconstituted with purified components,” Nat Biotechnol, 19, 8, pp. 751–755, 2001.

    Article  Google Scholar 

  19. Murakami, H., Ohta, A., Ashigai, H. and Suga, H., “A highly flexible tRNA acylation method for non-natural polypeptide synthesis,” Nat Methods, 3, 5, pp. 357–359, 2006.

    Article  Google Scholar 

  20. Takinoue, M., Kiga, D., Shoda, K.-I. and Suyama, A., in press.

  21. Nitta, N. and Suyama, A., “Autonomous biomolecular computer modeled after retroviral replication,” LNCS, 2943, pp. 203–212, 2004.

    MathSciNet  Google Scholar 

  22. Kiga, D., Mochida, T., Takinoue, M. and Suyama, A., “Realization of RTRAC: Reverse transcription and Transcription-based Autonomous Computer,” Preliminary proceedings of DNA 11, pp. 397, 2005.

  23. Kiga, D., Shoda, K.-i., Takinoue, M. and Suyama, A., “Autonomous DNA computer in small vesicle,” Preliminary proceedings of DNA 12, pp.420, 2006.

  24. Lee, Y. H., Shoda, K.-i., Kiga, D. and Suyama, A., “In Vitro Proteosynthesis Molecular Automaton Based on RTRACS ,” Preliminary proceedings of DNA 14, to be appeared, 2008.

  25. Kim, J., White, K. S. and Winfree, E., “Construction of an in vitro bistable circuit from synthetic transcriptional switches,” Mol Syst Biol, 2, pp. 68, 2006.

  26. Wang, L., Brock, A., Herberich, B. and Schultz, P. G., “Expanding the genetic code of Escherichia coli,” Science, 292, 5516, pp. 498–500, 2001.

    Article  Google Scholar 

  27. Kiga, D., Sakamoto, K., Kodama, K., Kigawa, T., Matsuda, T., Yabuki, T., Shirouzu, M., Harada, Y., Nakayama, H., Takio, K., Hasegawa, Y., Endo, Y., Hirao, I. and Yokoyama, S., “An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system,” Proc Natl Acad Sci U S A, 99, 15, pp. 9715–9720, 2002.

    Article  Google Scholar 

  28. Lo Surdo, P., Walsh, M. A. and Sollazzo, M., “A novel ADP- and zinc-binding fold from function-directed in vitro evolution,” Nat Struct Mol Biol, 11, 4, pp. 382–383, 2004.

    Article  Google Scholar 

  29. http://hdl.handle.net/1721.1/21168.

  30. http://webcast.berkeley.edu/event_details.php?webcastid=15766.

  31. http://www.syntheticbiology3.ethz.ch/index.htm.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Kiga.

Additional information

Tutorial series of three invited papers

About this article

Cite this article

Kiga, D., Yamamura, M. Synthetic Biology. New Gener. Comput. 26, 347–364 (2008). https://doi.org/10.1007/s00354-008-0050-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00354-008-0050-z

Keywords:

Navigation