Skip to main content
Log in

Distributed Computing Theory for Molecular Robot Systems

  • Published:
New Generation Computing Aims and scope Submit manuscript

Abstract

Distributed computation consists of local computations and their interactions. We consider a molecular robot system as a distributed system composed of mobile computing entities with very weak capabilities, i.e., computing entities are anonymous (indistinguishable), oblivious (memory-less), and uniform (following a common local computation rule). The key property of such a distributed system is self-organization. In this survey, we first introduce shape formation by mobile computing entities and present characterizations of formable shapes. We then consider global behavior realized by shapes of a distributed system. We demonstrate general computational power of mobile computing entities in terms of computing languages and predicates. Finally, we demonstrate dynamic behavior, such as locomotion and search, realized by a sequence of shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The pattern formation problem allows arbitrary scaling of the target pattern, because the robots have no access to the global coordinate system.

  2. We can also consider a metamorphic robotic system in the 3D square grid with corresponding local movements and connectivity requirement for cubic cells.

  3. The value of k usually depends on the number modules so that each module can observe the positions of all other modules.

References

  1. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. In: Proceedings of the 23rd Annual ACM Symposium on Principles of Distributed Computing (PODC 2004), pp. 290–299 (2004). https://doi.org/10.1145/1011767.1011810

  2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253 (2006). https://doi.org/10.1007/s00446-005-0138-3

    Article  MATH  Google Scholar 

  3. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population protocols. In: Proceedings of the 9th International Conference on Principles of Distributed Systems (OPODIS 2005), pp. 103–117 (2006)

  4. Becker, A.T., Fekete, S.P., Keldenich, P., Krupke, D., Rieck, C., Scheffer, C., Schmidt, A.: Tilt assembly: algorithms for micro-factories that build objects with uniform external forces. Algorithmica (2018). https://doi.org/10.1007/s00453-018-0483-9

  5. Cooper, C., Lamani, A., Viglietta, G., Yamashita, M., Yamauchi, Y.: Constructing self-stabilizing oscillators in population protocols. Inf. Comput. 255(3), 336–351 (2017). https://doi.org/10.1016/j.ic.2016.12.002

    Article  MathSciNet  MATH  Google Scholar 

  6. Cromwell, P.R.: Polyhedra. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  7. Czyzowicz, J., Ga̧sieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane. Theor. Comput. Sci. 410, 481–499 (2009). https://doi.org/10.1016/j.tcs.2008.10.005

    Article  MathSciNet  MATH  Google Scholar 

  8. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: Autonomous mobile robots with lights. Theor. Comput. Sci. 609(1), 171–184 (2016). https://doi.org/10.1016/j.tcs.2015.09.018

    Article  MathSciNet  MATH  Google Scholar 

  9. Derakhshandeh, Z., Dolev, S., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Brief announcement: Amoebot—a new model for programmable matter. In: Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2014), pp. 220–222 (2014). https://doi.org/10.1145/2612669.2612712

  10. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Universal shape formation for programmable matter. In: Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2016), pp. 289–299 (2016). https://doi.org/10.1145/2935764.2935784

  11. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Universal coating for programmable matter. Theor. Comput. Sci. 671, 56–68 (2017). https://doi.org/10.1016/j.tcs.2016.02.039

  12. Di Luna, G.A., Flocchini, P., Santoro, N., Viglietta, G.: Turingmobile: A turing machine of oblivious mobile robots with limited visibility and its applications. In: Proceedings of the 32nd International Symposium on Distributed Computing (DISC 2018), pp. 19:1–19:18 (2018). https://doi.org/10.4230/LIPIcs.DISC.2018.19

  13. Di Luna, G.A., Flocchini, P., Santoro, N., Viglietta, G., Yamauchi, Y.: Shape formation by programmable particles. In: Proceedings of the 21st International Conference on Principles of Distributed Systems (OPODIS 2017), pp. 31:1–31:16 (2018). https://doi.org/10.4230/LIPIcs.OPODIS.2017.31

  14. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974). https://doi.org/10.1145/361179.361202

    Article  MATH  Google Scholar 

  15. Doi, K., Yamauchi, Y., Kijima, S., Yamashita, M.: Exploration of finite 2D square grid by a metamorphic robotic system. In: Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018), pp. 96–110 (2018). https://doi.org/10.1007/978-3-030-03232-6_7

  16. Dumitrescu, A., Suzuki, I., Yamashita, M.: Formations for fast locomotion of metamorphic robotic systems. Int. J. Robot. Res. 23(6), 583–593 (2004). https://doi.org/10.1177/0278364904039652

    Article  Google Scholar 

  17. Dumitrescu, A., Suzuki, I., Yamashita, M.: Motion planning for metamorphic systems: feasibility, decidability, and distributed reconfiguration. IEEE Trans. Robot. Autom. 20, 409–418 (2004). https://doi.org/10.1109/TRA.2004.824936

    Article  Google Scholar 

  18. Flocchini, P., Prencipe, G., Santoro, N. (eds.): Distributed Computing by Mobile Entities: Current Research in Moving and Computing. Lecture Notes in Computer Science Book, vol. 11340. Springer, Berlin (2019). https://doi.org/10.1007/978-3-030-11072-7

  19. Fujinaga, N., Yamauchi, Y., Ono, H., Kijima, S., Yamashita, M.: Pattern formation by oblivious asynchronous mobile robots. SIAM J. Comput. 44, 740–785 (2015). https://doi.org/10.1137/140958682

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, Z., Yamauchi, Y., Kijima, S., Yamashita, M.: Team assembling problem for asynchronous heterogeneous mobile robots. Theor. Comput. Sci. 721, 27–41 (2018). https://doi.org/10.1016/j.tcs.2018.01.009

    Article  MathSciNet  MATH  Google Scholar 

  21. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Mediated population protocols. Theor. Comput. Sci. 412, 2434–2450 (2011). https://doi.org/10.1016/j.tcs.2011.02.003

    Article  MathSciNet  MATH  Google Scholar 

  22. Michail, O., Skretas, G., Spirakis, P.G.: On the transformation capability of feasible mechanisms for programmable matter. J. Comput. Syst. Sci. 102, 18–39 (2019). https://doi.org/10.1016/j.jcss.2018.12.001

    Article  MathSciNet  MATH  Google Scholar 

  23. Michail, O., Spirakis, P.G.: Network constructors: A model for programmable matter. In: Proceedings of SOFSEM 2017: Theory and Practice of Computer Science, pp. 15–34 (2017). https://doi.org/10.1007/978-3-319-51963-0_3

  24. Sipser, M.: Introduction to the Theory of Computation, 3rd edn. Cenage Learning, Boston (2013)

    MATH  Google Scholar 

  25. Sudo, Y., Nakamura, J., Yamauchi, Y., Ooshita, F., Kakugawa, H., Masuzawa, T.: Loosely-stabilizing leader election in a population protocol model. Theor. Comput. Sci. 444, 100–112 (2012). https://doi.org/10.1016/j.tcs.2012.01.007

    Article  MathSciNet  MATH  Google Scholar 

  26. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999). https://doi.org/10.1137/S009753979628292X

    Article  MathSciNet  MATH  Google Scholar 

  27. Yamashita, M., Kameda, T.: Computing on anonymous networks: part I—characterizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7(1), 69–89 (1996). https://doi.org/10.1109/71.481599

    Article  Google Scholar 

  28. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious anonymous mobile robots. Theor. Comput. Sci. 411, 2433–2453 (2010). https://doi.org/10.1016/j.tcs.2010.01.037

    Article  MathSciNet  MATH  Google Scholar 

  29. Yamauchi, Y., Uehara, T., Kijima, S., Yamashita, M.: Plane formation by synchronous mobile robots in the three-dimensional Euclidean space. J. ACM 64(3), 16:1–16:43 (2017). https://doi.org/10.1145/3060272

    Article  MathSciNet  MATH  Google Scholar 

  30. Yamauchi, Y., Uehara, T., Yamashita, M.: Brief announcement: Pattern formation problem for synchronous mobile robots in the three dimensional Euclidean space. In: Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing (PODC 2016), pp. 447–449 (2016). https://doi.org/10.1145/2933057.2933063

  31. Yamauchi, Y., Yamashita, M.: Randomized pattern formation algorithm for asynchronous oblivious mobile robots. In: Proceedings of the 28th International Symposium on Distributed Computing (DISC 2014), pp. 137–151 (2014). https://doi.org/10.1007/978-3-662-45174-8_10

  32. Yasumi, H., Kitamura, N., Ooshita, F., Izumi, T., Inoue, M.: A population protocol for uniform \(k\)-partition under global fairness. Int. J. Netw. Comput. 9(1), 97–110 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukiko Yamauchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by JSPS KAKENHI Grant Number JP18H03202 and JST SICORP Grant Number JPMJSC1806.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamauchi, Y. Distributed Computing Theory for Molecular Robot Systems. New Gener. Comput. 38, 325–340 (2020). https://doi.org/10.1007/s00354-020-00092-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00354-020-00092-1

Keywords

Navigation