Skip to main content
Log in

Automated adaptive 3D forming simulation processes

  • Special Issue
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this study, an automated adaptive mesh control scheme, based on local mesh modifications, is developed for the finite element simulations of 3D metal-forming processes. Error indicators are used to control the mesh discretization errors, and an h-adaptive procedure is conducted. The mesh size field used in the h-adaptive procedure is processed to control the discretization and geometric approximation errors of the evolving workpiece mesh. Industrial problems are investigated to demonstrate the capabilities of the developed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38

Similar content being viewed by others

References

  1. Cheng JH, Kikuchi N (1986) A mesh rezoning technique for finite element simulation of metal forming processes. Int J Numer Methods Eng 23:219–228

    Article  MATH  Google Scholar 

  2. Habraken A, Cescotto S (1990) An automatic remeshing technique for finite element simulation of forming processes. Int J Numer Meth Eng 30:1503–1525

    Article  Google Scholar 

  3. Hattangady NV, Shephard MS, Chaudhary AB (1999) Towards realistic automated 3D modelling of metal forming problems. Eng Comput 15:356–374

    Article  Google Scholar 

  4. Ravindranath MN, Kumar RK (2000) Simulation of cold forging using contact and practical adaptive meshing algorithms. J Mater Proc Technol 104:110–126

    Article  Google Scholar 

  5. Chand CP, Kumar RK (1998) Remeshing issues in the finite element analysis of metal forming problems. J Mater Proc Technol 75:63–74

    Article  Google Scholar 

  6. Zhu YY, Zacharia T, Cescotto S (1997) Application of fully automatic remeshing to complex metal-forming analyses. Comput Struct 62(3):417–427

    Article  MATH  Google Scholar 

  7. Mathisen KM, Hopperstad OS, Okstad KM, Berstad T (1999) Error estimation and adaptivity in explicit nonlinear finite element simulation of quasi-static problems. Comput Struct 72:627–644

    Article  MATH  Google Scholar 

  8. Kwak DY, Cheon JS, Im YT (2002) Remeshing for metal forming simulations. Part I: two-dimensional quadrilateral remeshing. Int J Numerical Methods Eng 53:2463–2500

    Article  MATH  Google Scholar 

  9. Coupez T (1995) Automatic remeshing in three-dimensional moving mesh finite element analysis of industrial forming. In: Shen SF, Dawson PR (eds) Simulation of material processing: theory, practice, methods and applications. Balkema, Rotterdam, pp 407–412

    Google Scholar 

  10. Fluhrer J (2004) DEFORM 3DTM Version 5.0 User’s Manual. Scientific Forming Technologies Corporation, Columbus, OH

    Google Scholar 

  11. Kobayashi S, OH S-I, Altan T (1989) Metal forming and the finite element method. Oxford University Press, New York

    Google Scholar 

  12. Freitag LA, Ollivier-Gooch C (1997) Effect of mesh quality on solution efficiency. In: Proceedings of the 6th international meshing roundtable. Park City, Utah, October 1997, pp 249–260

  13. Fried L (1972) Accuracy of complex finite elements. AIAA J 10:347–349

    Article  MATH  Google Scholar 

  14. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover, Mineola

    Google Scholar 

  15. Liu A, Joe B (1994) Relationship between tetrahedron shape measures. BIT 34:268–287

    Article  MATH  MathSciNet  Google Scholar 

  16. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int J Numer Meth Eng 33:1331–1364

    Article  MATH  MathSciNet  Google Scholar 

  17. Baehmann PL, Shephard MS, Flaherty JE (1992) A posteriori error for trianglular and tetrahedral quadratic elements using interior residuals. Int J Numer Meth Eng 34:979–996

    Article  MATH  MathSciNet  Google Scholar 

  18. Baehmann PL, Shephard MS, Ashley R, Jay A (1988) Automated metal forming modeling utilizing adaptive remeshing and evolving geometry. Comput Struct 30:319–325

    Article  MATH  Google Scholar 

  19. Baehmann PL, Collar RR, Hattangady NV, Shephard MS (1992) Geometry and mesh control for automated bulk forming simulations. In: Proceedings of ASME winter annual meeting. Anaheim, CA, pp 45–57

  20. George PL (1991) Automatic mesh generation: application to finite element methods. Wiley, Chichester

    MATH  Google Scholar 

  21. Shephard MS, Baehmann PL, Collar RR, Hattangady NV, Niu Q (1993) Automated remodeling techniques in finite element analysis. Advances in CAD/CAE, Academic, New York

  22. Beall MW, Shephard MS (1997) A general topology-based mesh data structure. Int J Numer Meth Eng 40:1573–1593

    Article  MathSciNet  Google Scholar 

  23. Li X, Shephard MS, Beal MW (2003) 3D anisotropic mesh adaptation by mesh modifications. Comp Meth Appl Mech Eng (Submitted)

  24. Braack M, Becker R, Rannacher R (1997) An adaptive finite element method for combustion problems. In: Proceedings of the third summer conference, numerical modelling in continuum mechanics. Charles Universirt, Prague, Czech Republic, pp 91–100

  25. Hattangady NV (1999) Automatic remeshing in 3D analysis of forming process. Int J Numer Meth Eng 45:553–568

    Article  MATH  Google Scholar 

  26. Shephard MS, Georges MK (1991) Automatic three-dimensional mesh generation by the finite octree technique. Int J Numer Meth Eng 32(4):709–749

    Article  MATH  Google Scholar 

  27. Li X, Shephard MS, Beall MW (2003) Accounting for curved domains in mesh adaptation. Int J Numer Meth Eng 58:247–276

    Article  MATH  Google Scholar 

  28. Zorin D, Schroder P, Sweldens W (1996) Interpolating subdivision with arbitrary topology. In: Proceedings of computer graphic, ACM SIGGRAPH, pp 189–192

  29. Lee CK (2003) Automatic metric 3D surface mesh generation using subdivision surface geometrical model. Part I: construction of underlying geometric model. Int J Numer Meth Eng 56:1593–1614

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge GE Corp for funding this work. Technical assistance from A. Majorell, D. Mika and P. R. Myers from GE, and C. Fischer from SFTC is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Shephard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, J., Kocak, S. & Shephard, M.S. Automated adaptive 3D forming simulation processes. Engineering with Computers 21, 47–75 (2005). https://doi.org/10.1007/s00366-005-0001-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-005-0001-y

Keywords

Navigation