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ABSTRACT

We compare inexact Newton and coordinate descent optimization methods for improving the quality of a mesh by
repositioning the vertices, where the overall quality is measured by the harmonic mean of the mean-ratio metric. The
effects of problem size, element size heterogeneity, and various vertex displacement schemes on the performance of
these algorithms are assessed for a series of tetrahedral meshes.
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1. INTRODUCTION

Mesh vertex repositioning algorithms have been used
for many years to improve solution accuracy and ef-
ficiency; see, for example, [1, 2, 3, 4]. Repositioning
techniques vary widely in the time required to imple-
ment and modify the algorithm and in the computa-
tional cost and effectiveness when applying the algo-
rithm, usually with a trade-off between these criteria.
Laplacian smoothing, for example, is easy to imple-
ment and inexpensive to apply but can produce tan-
gled meshes. Moreover, this method is limited to the
creation of smooth meshes, while vertex repositioning
can address other meshing needs such as equidistribu-
tion of volumes [5], shape improvement [6], or adaptive
r-refinement [7]. These more complex tasks can usu-
ally be posed as numerical optimization problems in
which an objective function is defined measuring one
or more mesh property. This objective function can
then be optimized by repositioning the vertices, lead-
ing to improvement in the mesh properties measured.

When approaching the vertex repositioning problem
from an optimization perspective, a natural idea is to
formulate a single objective function measuring global

mesh quality. This global objective function is typi-
cally constructed by accumulating contributions from
each local measure of quality into a scalar function of
the positions of all free vertices in the mesh.! We
consider two approaches for numerically optimizing
the global objective function: an all-vertexr approach
where the positions of all free vertices are moved simul-
taneously within a single iteration, and a single-vertex
approach where the position of only one vertex is mod-
ified at a time. We employ an inexact Newton method
as our all-vertex optimization algorithm and a coor-
dinate descent method as our single-vertex algorithm
in which an exact Newton method is applied to solve
each coordinate descent subproblem. The goal of this
paper is to determine when one of these methods is
preferable to the other, where preference can include
the ease with which the method can be implemented
and modified, the computational and memory require-
ments for applying the method, and the accuracy and
quality of the mesh produced, perhaps as a function of
computation time. A complete answer should consider
all these characteristics.

LAn important alternative to mesh optimization often
used by the unstructured mesh community employs a series
of local objective functions.



The preferred method may differ depending on the
circumstances. For example, the coordinate descent
method may be better suited to quickly finding an ap-
proximate solution, while the inexact Newton method
may be more suitable for calculating a highly accu-
rate solution. Factors that may be significant in de-
termining the preferred approach include the objec-
tive function, quality metric, desired accuracy in the
resulting mesh, mesh type (structured vs. unstruc-
tured), dimension (planar vs. volume), element type
(simplicial vs. nonsimplicial), problem size, mesh het-
erogeneity and anisotropy, and the degree and man-
ner in which the initial mesh differs from the optimal
mesh. Algorithm implementations also have a signif-
icant impact, since a simple implementation can be
much slower than a more sophisticated version.

In this paper we report the results of an initial explo-
ration of these factors to determine the circumstances
in which the inexact Newton method or the coordi-
nate descent method may be preferred. To make the
study manageable, we limit the number of free pa-
rameters and consider a fixed mesh type, quality met-
ric, and objective function template. In particular, we
use tetrahedral meshes, the mean-ratio quality met-
ric for isotropic elements, and a template targeting
average quality improvement. The free parameters in-
vestigated are the problem size, element homogeneity,
initial mesh configuration, and desired degree of accu-
racy in the resulting mesh.

2. PROBLEM STATEMENT
2.1 Element and Mesh Quality

An unstructured mesh consists of a finite set of ver-
tices V and elements £, where |V| denotes the number
of vertices and || the number of elements. The set of
vertices on the boundary of the mesh is denoted by Vg,
while the set of interior vertices, that is, those not on
the boundary, is denoted by Vz. Let z, € R¢ denote
the coordinates for vertex v € V. For surface and vol-
ume meshes d = 3, while for planar meshes d = 2 (in
this paper we only consider volume meshes). More-
over, © € RV refers to the collection of all vertex
coordinates. Each element e € £ consists of a small
subset of the vertices and the edges between these ver-
tices, where |e| is the number of vertices referenced by
element e, V. refers to the vertices referenced by e,
and z. € RI*lel the matrix of coordinates for e.

Associated with the mesh is a continuous function
g : Rl R measuring one or more geometric
property of an element as a function of the vertex po-
sitions.? In particular, ¢(z.) measures the quality of

2For hybrid meshes, the exact definition of ¢ can change
depending on the element type. However, we assume that
the quality metric, shape, for example, is the same for every

element e, where we assume a larger value of g(z.) in-
dicates a higher quality element. A specific function
q is referred to as an element quality metric. Many
functions can serve as quality metrics, so the quality
of an element is not uniquely defined. For example,
there are different metrics to measure the shape, size,
and orientation of elements. In general, useful quality
metrics possess other properties in addition to conti-
nuity, but a discussion of this topic is beyond the scope
of the present study [8].

The overall quality of the mesh is measured by a func-
tion Q : Rl — R taking as input the vector of el-
ement quality metrics, [].c¢ q(we), where J] denotes
the Cartesian product. The mesh quality depends on
both the choice of the specific element quality met-
ric ¢ and the particular template function Q used to
combine them. Useful template functions can be con-
structed from the arithmetic or other means.

2.2 The Mean-Ratio Metric

An important variable in this study is the choice of
quality metric. In general, we expect the study re-
sults could vary significantly depending on whether
or not one were to chose shape metrics as opposed
to size, smoothness, combined, or other metrics. For
this initial solver comparison, we focus on the mean-
ratio shape-quality metric. Other shape metrics such
as aspect ratio or condition number would likely give
similar timing results; we plan to study these metrics
and others not explicitly focused on shape in future
work.

Let Sqxa be a matrix with det(S) > 0. The mean ratio
p of S is the scalar

_ ddet(S)*/¢
S =5

where ||S||F = 1/tr(STS) is the Frobenius norm. One
can readily show that 0 < u(S) < 1. To apply the
mean ratio to element quality, assume each vertex of
the element is connected to d edges (and therefore d
other vertices) belonging to the element.® Let z; be
the coordinates of the ith vertex, and let xx be the co-
ordinates of another vertex in the element connected
to v; by an edge. Construct the matrix A((;; 4 Whose
columns are the vectors x — x; for each adjacent ver-
tex v in the element. The columns are ordered to
preserve element orientation so that the element has
locally nonpositive volume if det(A*)) < 0 for any ver-
tex; such elements are called “inverted.” Let Wgixq be
a reference matrix for the ideal element shape (e.g.,

element.

3This approach excludes elements such as pyramids but
includes triangles, tetrahedra, wedges, quadrilaterals, and
hexahedra.



an equilateral reference triangle is often used for tri-
angular elements). This reference matrix is found by
constructing W from the ideal element in the same
way A is constructed for the mesh element. For each
element vertex i let p; = pu(AYW™1) be the mean
ratio at the ith element vertex.

Finally, the mean ratios of the element vertices are
averaged to form an element quality metric symmetric
in the element vertex indices.* We use the arithmetic
mean, although different means could also be applied.
The shape quality of element e is then

Zm
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As one would expect, this metric is scale, translation,
and rotation invariant. Furthermore, 0 < g < 1 with
ge = 1 only when the element attains the ideal refer-
ence shape. We do not define the mean ratio for ma-
trices with nonpositive determinants. Therefore, the
shape quality of “inverted” elements is not defined.
For further details on shape metrics see [9].

2.3 Quality Improvement Problem

To improve the overall quality of the mesh we assemble
the local element qualities using an objective function
template Q. We compute an z* € R4V such that z*
is an optimal solution to

max Q q (xe)> (1)
= o(
subject to the constraint that xv, = Zy,, where Ty,
are the coordinates for the boundary vertices. Note
that additional constraints can be added if the loca-
tions for some of the interior vertices also need to be
fixed. If the objective function for this optimization
problem is uniformly concave as a function of zy., that
is, the Hessian matrix, VIVI@VI 9Q(-), is uniformly
negative definite, then an z* solving this optimization
problem exists and is unique. If the objective function
is not concave, then one can only hope to find a lo-
cal maximizer for the optimization problem and may
instead compute a critical point.

We use the harmonic mean template for all our nu-
merical results. This template produces the objective
function

&
th::Z ||1 :

e€€ qo(we)
This objective function is maximized precisely when
the denominator is minimized. Therefore, the opti-
mization problem we solve is

min ]:hm

= e Z (@) @)

4We show in [6] that averaging is unnecessary in the
case of triangular or tetrahedral elements.

subject to the same boundary constraints as (1). The
objective function in this case is continuous on the set
of noninverted meshes and bounded below by 1 and
minimizes the average inverse mean-ratio metric. We
further assume the initial set of coordinates is feasi-
ble; that is, the corresponding mesh does not contain
inverted elements. We also require the improved mesh
to be noninverted, which translates to the implicit con-
straint det(A®) > 0 for every element vertex. There
is no need to implement these constraints explicitly,
however, because the denominator in the inverse mean
ratio acts as a barrier to element inversion.

3. IMPROVEMENT ALGORITHMS

Many algorithms can be applied to compute a solu-
tion to the quality improvement problem (2).® In this
paper, we consider the block coordinate descent and
inexact Newton methods [10, 11]. The block coordi-
nate descent method optimizes the location of a single
vertex at a time by applying an optimization algorithm
to a restricted problem in which only the coordinates
for the given vertex are allowed to move. This opti-
mization step is repeated for each of the other vertices
in the mesh. This iterative repositioning stops when
the norm of the gradient of the global objective func-
tion is small. The inexact Newton method, on the
other hand, constructs a quadratic approximation to
the global objective function at the current iterate and
computes a solution to this quadratic program by solv-
ing a large system of equations. A new iterate is then
found for which the objective function has decreased.

The block coordinate descent algorithm solves a se-
quence of small optimization problems to improve the
global objective function but has a slow asymptotic
convergence rate, while the inexact Newton method
solves a large quadratic optimization problem at every
iteration but has a fast asymptotic convergence rate. If
the global objective function in (2) is uniformly convex
in the free variables, then both algorithms converge to
the same solution z* [10]. However, if the objective
function is not convex, as is often the case in mesh
optimization, we can only say that if the block co-
ordinate descent method converges to z*, then x* is
a critical point for the optimization problem (2) and
2* may not be a local minimizer. Moreover, the opti-
mization subproblems in the nonconvex case may have
either no solution or many local minimizers.

However, for the inverse mean-ratio metric, even
though the global objective function is not convex ev-
erywhere, one can prove that the objective function
for each subproblem of the block coordinate descent

5Recall that (2) minimizes the inverse mean-ratio ob-
jective function, so the stated algorithms use minimization
terminology. However, the same algorithms can be used for
the maximization problem (1).



method is strictly convex [12, 13] and the feasible re-
gion is compact. Therefore, each of these subproblems
has a unique solution. Note that the inexact Newton
and block coordinate decent algorithms may not con-
verge to the same critical point.

3.1 Block Coordinate Descent Method

The block coordinate descent method modifies a single
vertex at a time by applying one iteration of an exact
Newton method to the subproblem obtained by fixing
the rest of the vertices at their current coordinates.
That is, we computed a direction d where for vertex
v € Vz, the vth component of d is obtained by solving
the system of equations

V2 o Fhm (#)do = =V Fpyp (2F).

The remaining components of d are set to zero. Note
that we need only the Hessian matrix with respect to
vertex v, so the complete Hessian matrix for the global
objective function does not need to be computed. The
direction is obtained by computing the LDLT factor-
ization of the d x d local Hessian matrix and applying
it to the right-hand side of the problem. An iterative
method is not needed in this case because the system
of equations is very small. For the metric used, the
Hessian matrix is positive definite, so the factorization
can always be computed.

Having obtained a search direction, we then use an
Armijo linesearch [14] to obtain a new iterate with im-
proved quality. In particular, we compute the smallest
nonnegative integer m such that

]—"hm(xk +4™d) < fhm(xk) + J,@mV}"hm(mk)Td.

When searching along the direction, all points where
the resulting mesh is degenerate or inverted are re-
jected; the objective function value is treated as posi-
tive infinity in these cases. To judge progress, we need
consider the quality of the elements only in which ver-
tex v appears, since the quality of elements outside
this set do not change when the location of vertex v
is modified. Hence, the Armijo linesearch is computa-
tionally inexpensive. To make both the Armijo line-
search and Hessian matrix computations efficient for
the block coordinate descent method, we precompute
a mapping from each vertex to the elements referenc-
ing the vertex.

We then update 2* = z* 4+ 8™d and choose a different
vertex to optimize. The order in which the vertices
are traversed in each pass is determined by reverse
breadth-first search starting from the vertex farthest
from the origin.

An iteration of the block coordinate descent method
consists of a single repositioning of each interior ver-
tex. Once each of the interior vertices has been repo-
sitioned, we proceed to the next iteration by setting

¥t = z*. The local improvement process is repeated

until the gradient of the global objective function is
less than some tolerance.

3.2 Inexact Newton Method

The inexact Newton method computes a direction d
by solving the system of equations

Vivz,x\,thm(xk)d = *vIvI}-hm(xk)

by applying the conjugate gradient method with a
block Jacobi preconditioner [15], where z* is the cur-
rent iterate. Having obtained a search direction, we
then use an Armijo linesearch [14] to obtain a new
iterate with a sufficiently improved quality. This line-
search is the same as the block coordinate descent
linesearch but must consider the improvement in the
global objective function instead of the improvement
to only the elements referenced by a single vertex.

The gradient and Hessian of the objective function are
calculated by assembling the gradients and Hessians
for each of the element functions into a vector and
symmetric sparse matrix. Only the upper triangular
part of the Hessian matrix is stored in a block com-
pressed sparse row format. Each block corresponds
to a coordinate in the original problem. The gradient
and Hessian elements corresponding to fixed vertices
on the boundary of the domain are ignored.

The preconditioner consists of the Hessian with re-
spect to the (i,7) coordinates, resulting in a block di-
agonal preconditioner, where each block consists of a
d x d matrix. An LDLT factorization of each diag-
onal matrix is performed when calculating the pre-
conditioner. The preconditioner is applied by setting
y=L"T(D (L 'x)). We store D™ so that the mid-
dle product consists of a few multiplications, instead
of a few divisions. Each diagonal block of the Hes-
sian matrix is positive definite even though the overall
Hessian is indefinite in general [12, 13], so the precon-
ditioner can always be computed.

3.3 Implementation Characteristics

Our implementations of the coordinate descent
method and the inexact Newton method have been
coded with a bias toward achieving high performance
with minimal memory requirements. Both codes use
analytic gradient and Hessian evaluations, since finite
difference approximations for the inverse mean-ratio
metric are inefficient by comparison.

Instead of computing with W ™' in the mean ratio
metric, we precompute a QR factorization of W in
which QR = W, where @ is an orthogonal matrix
with determinant equal to one, R is an upper triangu-
lar matrix, and W~! = R7'QT. The QT matrix can



then be ignored in the mean-ratio metric when using
this form of W~ due to properties of the Frobenius
norm and determinant. Hence, M(A(”W*l) is equiva-
lent to u(A®WR™1). The latter definition is computa-
tionally advantageous, because the function, gradient,
and Hessian matrices take fewer operations to compute
than if W' were stored as a general dense matrix by
exploiting the fact that R~! is an upper triangular
matrix.

To further minimize the number of floating-point oper-
ations performed per iteration, the coordinate descent
algorithm has separate evaluation routines for taking
the gradient and Hessian with respect to each vertex
in the inverse mean-ratio metric. Each routine is ob-
tained by applying an even permutation to the input
data (coordinates for both the trial and reference ele-
ments), computing the QR factorization for each of the
permuted reference elements, and then taking the gra-
dient and Hessian with respect to the desired vertex of
this equivalent function definition. All of these opera-
tions are performed offline for the given weight matrix,
and the resulting code is further refined to reduce op-
eration counts. In particular, for the equilateral weight
matrix, R~! is the same for each of the permuted ref-
erence elements. For a different weight matrix, how-
ever, four different versions of the weight matrix may
be required. The savings attributed to this approach
are significant compared to a simple implementation
using a single Hessian evaluation routine for the en-
tire element; for equilateral tetrahedral elements, the
cost per iteration of the simple implementation is over
three times that of the efficient implementation.

One of the main computational tasks associated with
the inexact Newton method is obtaining an efficient
evaluation for the Hessian of the global objective func-
tion. This computation requires obtaining the Hes-
sian for each of the individual element functions. The
code for calculating the gradient of the element func-
tion uses the reverse mode of differentiation [16] on
the element quality metric. The Hessian calculation
uses the forward mode of differentiation on the gra-
dient evaluation and matrix-matrix products for ef-
ficiency. The other significant computational task is
the matrix-vector products required by the conjugate
gradient method to compute the search direction.

To obtain good locality of reference in the Hessian
evaluation and matrix-vector products, the vertices
and elements in the initial mesh are reordered by ap-
plying a breadth-first search. The ordering starts by
selecting the (boundary) vertex farthest from the ori-
gin. A breadth-first search of the vertices in the mesh
is then performed, and the order they are visited is
tracked. We then reverse the order in which the ver-
tices were visited to obtain the reordering for the prob-
lem. Once the vertices are reordered, the elements

are then reordered according to when they are visited
by the Hessian evaluation. This reordering is used
by both the coordinate descent and inexact Newton
methods.

Each iteration of the coordinate descent method con-
sists of computing the gradient and Hessian for each
subproblem, obtaining the direction, and computing
each improving point. The gradient and Hessian eval-
uation is the most expensive operation and requires a
total of 508 floating-point operations per element in
the tetrahedral mesh. Each iteration of the inexact
Newton method consists of computing the gradient
and Hessian evaluation of the global objective func-
tion, obtaining the direction by the conjugate gradi-
ent method, and computing the improving point. The
gradient and Hessian evaluation in this case requires
689 floating-point operations per element in the mesh.
Just looking at the cost of obtaining the gradient and
Hessian information, we can see that the coordinate
descent method should be faster per iteration than the
inexact Newton method.

In addition to the computational effort, we are also
interested in evaluating the memory footprint of each
method as the problem size increases. Our imple-
mentation of the coordinate descent method for tetra-
hedral elements has a steady-state memory require-
ment of approximately 23|V| 4+ 12|€| integer values.
The formula for memory usage of the inexact New-
ton method is more complicated due to the storage
requirements for the Hessian matrix and is given by
64|V| + 18|€| + 19N integer values, where N denotes
the number of off-diagonal blocks in the Hessian ma-
trix. On the tetrahedral meshes tested, the number of
off-diagonal blocks is bounded above by the number of
elements in the mesh. Therefore, the memory usage is
approximately 64|V| + 37|€| integer values for the in-
exact Newton method, about three times the storage
required for the coordinate descent method.

Conclusion 1: The coordinate descent method is
faster per iteration and consumes less memory than
the inexact Newton method but has a slow asymptotic
convergence rate. Furthermore, the inexact Newton
method requires a higher initial investment in coding
routines to assemble the global Hessian matrix from
the element Hessian matrices, construct the precondi-
tioner, and perform the preconditioned conjugate gra-
dient method to compute the direction. Once this in-
frastructure has been built, however, changing to a
new metric requires only an efficient computation of
the element Hessian matrix. To change the metric
for the coordinate descent method, we need to imple-
ment four different gradient and Hessian evaluation
routines. Moreover, if the new metric is not rotation-
ally invariant, then the rotation operations used with
the inverse mean-ratio metric cannot be performed,
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Figure 1: Sample meshes on the duct and clipped cube
geometries.

and a different technique must be devised to obtain
an efficient coordinate descent method.

4. NUMERICAL EXPERIMENTS

In this section, we report the results of numerical tests
designed to determine when the block coordinate de-
scent and inexact Newton techniques are preferred us-
ing a subset of the criteria given in Section 1. We
solve the optimization problem (2) on a series of tetra-
hedral meshes generated with the CUBIT [17] and
GRUMMP [18] mesh generation packages. We con-
sider two different computational domains, duct and
clipped cube, and show sample meshes on these ge-
ometries in Figure 1. In this paper, we study the ef-
fects of three different problem parameters on the time
taken to reach x*: problem size, element heterogene-
ity, and initial mesh configuration. For each parameter
studied, we create a suite of test meshes in which we
isolate the parameter of interest, allowing it to vary,
while simultaneously holding the other parameters as
constant as possible.

In each of the following subsections, we give the prob-
lem characteristics of the test suite in terms of the
number of vertices and elements, initial mesh qual-
ity as evaluated by the inverse mean-ratio metric, and
specific parameter values used such as the perturba-
tion of the initial mesh. We then provide the results
for both the inexact Newton and coordinate descent
mesh quality improvement techniques. For the inex-
act Newton method, the maximum number of solver
iterations is 500, and the maximum number of CG
subiterations is 100, while for the coordinate descent
method, the maximum number of iterations, that is,
passes through the free vertices, is 1000. In both cases,
the solution is considered to be optimal when the norm
of the gradient of the global objective function is less
than 1.0 x 107°.

4.1 Increasing Problem Size

To test the effect of increasing the problem size, we
use CUBIT to generate tetrahedral meshes with uni-
form quality and element size but with an increasing
number of vertices for the duct geometry shown in
Figure 1. In Table 1, we give the number of vertices
and elements, along with the average, median, and
standard deviation normalized by the average value,
denoted o, for the inverse mean-ratio metric and ele-
ment volume. One can see that within each mesh, we
achieve roughly uniform element size and shape qual-
ity distributions while increasing the problem size from
4,104 elements to 965,759 elements. In addition, the
element quality characteristics are similar across this
suite of initial meshes as the problem size increases.
In particular, the initial mesh quality is quite good,
with an average inverse mean-ratio value of 1.2 (the
optimal is 1) and a maximum value ranging from 2.2
to 5.

In Table 2, we give the number of iterations, I, and
time, Thoo, required to achieve the optimal solution.
In all cases, both I and Tioo are significantly smaller
for the inexact Newton solver because of its superior
asymptotic convergence rate. As the problem size
increases, the disparity in time to solution increases
monotonically from a factor of 6.4 to a factor of 40.

However, a highly accurate solution is often not re-
quired in mesh smoothing applications. Therefore, the
time required to reach a partially improved mesh is
also of interest. As a particular example, we include
the time required to achieve 50% of the optimal solu-
tion as defined by the global objective function value,
T50, in Table 2. For every mesh in this test suite,
the coordinate descent method takes less time than
the inexact Newton method to reach this suboptimal
solution, typically by a factor of 1.5.

To examine this behavior more closely, we recorded
the objective function and gradient values at each it-
eration. A typical time history is shown for the Duct15
mesh in Figure 2. Because the inexact Newton method
converges to the optimal solution much more quickly
than the coordinate descent method, we show the com-
plete time history of the inexact Newton solver and
only the corresponding portion of the coordinate de-
scent method. Because the initial mesh quality is very
good, both methods make significant progress toward
the optimal solution in their first few iterations. How-
ever, significant setup overhead is associated with com-
puting the sparsity pattern of the Hessian matrix for
the inexact Newton method because the edges in the
mesh need to be sorted. During this setup time, the
coordinate descent method is able to complete one it-
eration through the mesh, which is sufficient to achieve
46% of optimality. Clearly, there is a point in time at
which the inexact Newton solution is closer to opti-



Table 1: Initial mesh characteristics for increasing problem size on the duct geometry.

Inverse Mean Ratio Element Volume
Mesh V| €| avg | median | o0, | max | avg | median | on
Duct20 1067 4104 1.208 1.176 A15 | 2.2 1167 1176 .285
Duct15 2139 9000 1.210 1.179 116 | 2.1 532 519 .304
Duct12 4199 19222 | 1.209 1.182 111 2.1 249 237 .327
Duct10 7297 35045 | 1.120 1.170 106 | 2.2 136 128 310
Duct8 13193 65574 1.19 1.162 105 | 24 73 68 .320
DuctBig | 177887 | 965759 | 1.18 1.160 109 | 4.9 4.1 2.91 .b87

Table 2: Number of iterations, total time, and time to
achieve a 50% optimal solution as problem size increases.

Newton Coordinate Descent
V| I | Tioo | Ts0 I T100 Ts0
1067 4| .05 .015 | 33 .32 .005
2139 5 13 | .025 | 46 1.1 .011
4199 5 .34 | .056 | 74 4.2 .037
7297 5 .69 | .106 | 105 | 11.6 .081
13193 | 5 1.4 | .213 | 146 | 31.0 152
177887 | 8 | 44.3 | 4.52 | 548 | 1738 2.47

mal than the coordinate descent solution. We call this
point the crossover point, and it is highlighted with an
asterisk in Figure 2. In the Ductl5 case, the mesh is
96% optimized when the crossover point occurs.

Based on these results, it is natural to ask the ques-
tions: “What is the percent improvement achieved at
the crossover point?” and “What is the time required
by each method to achieve a certain level of optimal-
ity?” as the problem size increases. To answer these
questions, for each method we plot the percent im-
provement obtained, the number of coordinate descent
iterations, and the percentage of time spent in setup
by each solver at the crossover point as a function of
an increasing problem size in the top graph in Fig-
ure 3. In all cases, the mesh is nearly optimal at the
crossover point even though the number of coordinate
descent iterations completed is quite small, typically
less than five. As the problem size increases, the setup
time for the inexact Newton solver is greater than 25%
of the time to reach the crossover point and typically
less than 10% for the coordinate descent method. In
this case, the setup time is the primary factor in de-
termining which solver reaches suboptimal solutions
faster.

In the bottom graph in Figure 3, we show the ratio
of the time required by the inexact Newton solver and
coordinate descent solver to achieve certain levels of
improvement. Each line in the graph represents a dif-
ferent problem size, and the flat line at 1 represents the
point at which the preferred method changes. Data
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Figure 2: Objective function value and gradient norm as
a function of time for the Ductl5 mesh.

above this line indicates that the coordinate descent
method is faster; data below indicates the opposite.
In this case, we see that the smaller problem sizes are
more affected by the setup time differences, but as the
problem size exceeds 20,000 elements, the methods be-
have similarly. In particular, it takes roughly twice as
long to compute suboptimal meshes using the inexact
Newton approach for a wide range of desired improve-
ment percentages. As the improvement percentage
increases, the inexact Newton method becomes more
competitive, but only when nearly optimal meshes are
desired does the inexact Newton method outperform
the coordinate descent method.

Conclusion 2: For good-quality, uniformly sized
tetrahedral meshes, the inexact Newton method out-
performs the coordinate descent method if an optimal
mesh is desired. If a partially improved mesh is suf-
ficient, the coordinate descent method typically out-
performs the inexact Newton method because of the
high setup costs associated with computing the spar-
sity pattern of the Hessian matrix, which cannot then
be amortized over a large number of iterations because
we start from a nearly optimal solution. This conclu-
sion is true for a wide range of problem sizes, including
the largest.
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Figure 3: Various quantities of interest at the crossover
point as the problem size increases (top) and the ratio of
the times required by the inexact Newton and coordinate
descent solvers to achieve certain levels of improvement
(bottom).

We emphasize that the conclusion in this section has
been demonstrated only for the mean-ratio metric and
harmonic mean template function on initial meshes
with (nearly) uniformly sized, well-shaped tetrahedral
elements. Whether it extends to other situations re-
mains to be seen. In the remainder of this section,
we examine the behavior of the solvers under different
conditions.

4.2 Element Size Heterogeneity

Our second test suite was generated using GRUMMP
with the aim of testing the effect of element size (vol-
ume) heterogeneity on the two solvers. A simple geom-
etry consisting of the unit cube with a small tetrahe-
dral volume clipped from one corner was used to create
graded meshes with grid points clustered around that
corner. GRUMMP parameters that determined the
smallest element size and gradation of the mesh were
manipulated to create a series of meshes with roughly
the same number of vertices and element quality distri-
bution but with different ranges of element sizes. We

note that in generating the initial meshes for these test
cases, we did not take advantage of GRUMMP’s mesh
quality improvement tools.

In Table 3, we give the statistics for these meshes in
terms of numbers of vertices, elements, shape qual-
ity distribution, and element volume. The numbers
of vertices, although not identical, are all within 6%
of 10,470. The normalized standard deviation of the
element volumes and the ratio of the maximum-sized
element to the minimum-sized element show that the
element size varies dramatically within a given mesh.
The shape quality distributions across the meshes in
the test suite are similar; the average shape quality
is nearly the same as in the uniform element size test
cases, but the normalized standard deviation is higher,
indicating a wider range of individual element quali-
ties. In particular, the maximum mean ratio of the
heterogeneous element size meshes exceeds a value of
15 in all cases, whereas it is approximately 2.5 in the
uniform element size test suite.

In Table 4, we give the number of iterations and the
times to reach the optimal and 50% improved solutions
as the element heterogeneity, measured by the ratio of
maximum element volume to minimum element vol-
ume, increases. As with the uniform element distri-
bution test suite, the inexact Newton method is sig-
nificantly faster than the coordinate descent method
when the optimal solution is desired. If a 50% im-
proved solution is desired, however, the coordinate de-
scent method outperforms the inexact Newton method
by a factor that ranges from 1.5 to 4, compared to the
factor of 1.5 for the uniform distribution case of the
previous subsection.

We examine the convergence history of one particular
case, Hetero4, to obtain insight into this result. Fig-
ure 4 shows the value of the objective function and
gradient as a function of time for both the inexact
Newton and coordinate descent methods. The coordi-
nate descent method maintains a steep initial decrease
in the objective function value, while the inexact New-
ton method has more difficulty. In particular, many
of the initial iterations of the inexact Newton method
encounter directions of negative curvature because the
global objective function is not convex at those iter-
ates. Typically, a small step is taken when such di-
rections are found by the conjugate gradient method.
Thus, the superior asymptotic convergence rates of the
inexact Newton method are not evident until approx-
imately two seconds have elapsed.

Because the inexact Newton method has difficulty
with these problems in the initial iterations, the co-
ordinate descent method has the time to take several
iterations, and the mesh in nearly 100% improved at
the crossover point in all cases. As before, the inex-
act Newton method uses twice as much time in setup



Table 3: Initial mesh characteristics for heterogeneous element size distributions.

Inverse Mean Ratio Element Volume
Mesh V| €] avg | median | o, | max avg median on | max/min
Heterol | 10318 | 54132 | 1.271 1.171 330 | 17.1 | 1.84-107° | 1.10-107° | 1.11 5.5-10°
Hetero2 | 9883 | 56184 | 1.274 | 1.172 | .371 | 30.2 | 1.77-107° | 6.04-107% | 1.46 | 2.3-10°
Hetero3 | 10926 | 58610 | 1.275 1.173 413 | 58.6 | 1.70-107° | 3.89-1077 | 1.74 7.2-107
Hetero4 | 11057 | 59985 | 1.272 | 1.173 | .322 | 16.1 | 1.66:107° | 1.59-107% | 2.08 | 4.2-10°
Table 4: Number of iterations, total time, and time to ! S — ‘ ‘ ‘
achieve 50% optimal solution as the element heterogene- of | - e momiooev =112 -
ity increases. © eteros. nomm vl dov— 2,08 o
Newton Coordinate Descent . ¢ |
Mesh I | Tio | T50 1 T100 T50 8¢ oo °
Heterol | 16 | 4.24 | .386 | 674 | 122 128 5 . o ’ oL
Hetero2 | 13 | 3.53 | .345 | 708 | 132 192 N T . \\
Hetero3 | 21 | 5.41 | .432 | 505 | 93 | .207 R T '
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Figure 4: Objective function value and gradient norm as
a function of time for the Hetero4 mesh.

as does the coordinate descent method. Unlike the
uniform element size test suite, however, this is not
the dominant factor in determining the crossover time

because both methods use less than 5% of their total
time in setup.

For this test suite, in Figure 5 we show the ratio of
the time required by the inexact Newton method and
the time required by the coordinate descent method
to reach a number of different levels of improvement.
For comparison, we also show the curves for the two
uniform element size test cases, Duct1l0 and Duct8,
which tightly bracket the number of elements in the
clipped cube meshes. The normalized standard devia-
tion values for the Duct 10 and Duct8 meshes are .310
and .320, respectively. In almost all cases, the coordi-

0 l‘D 2‘0 3"0 4‘0 5‘0 6‘0 7‘0 B‘O 9‘0 100
9% Improvement
Figure 5: Ratio of the inexact Newton and coordinate

descent times for various levels of improvement in the
objective function.

nate descent method is two to three times faster than
the inexact Newton method to reach a desired level of
improvement. In fact, in several cases, the ratio of the
times required to achieve higher levels of improvement
actually increases rather than decreases as a result of
the steep initial convergence of the coordinate descent
method. Furthermore, the coordinate descent method
is more competitive than the inexact Newton method
on the heterogeneous element size meshes than on the
uniformly sized element problems.

Conclusion 3: As element size heterogeneity in-
creases and mesh quality decreases for tetrahedral
meshes, the coordinate descent method is increasingly
attractive for suboptimal solutions. If the optimal so-

lution is desired, the inexact Newton method is pre-
ferred.

4.3 Initial Mesh Configuration

The final mesh test suite was designed to investigate
the effect of the degree and manner in which the initial
mesh differs from the optimal mesh. To address this
issue, our approach was to apply systematic or random
perturbations of the optimal positions of the interior
mesh vertices. We started with the optimized DuctBig
mesh and applied three different perturbation schemes



that involved random, translational, and oscillatory
movement of the mesh vertices. In all three cases, we
consider perturbations applied to all of the vertices
and to randomly chosen vertex subsets that contained
1%, 10%, and 25% of the total number of vertices. The
formulas for the perturbations are as follows:

Random: x, = x, + ar, where r is a three-vector con-
taining random numbers generated using the function
rand and a is a multiplicative factor controlling the
degree of perturbation. For this test suite, we chose
a= .001, .005, .01, and .05.

Translational: x, = x, + as, where s is a direction
vector giving the coordinates to be shifted and a is
again a multiplicative factor controlling the degree of
perturbation. In this case we considered a “right” shift
(R) with s; = [1 0 0] and a “northeast” shift (NE)
with s = [1 1 0]7 and chose a = .1, .2, and .3. In
the case of the NE shift, we also considered a series of
meshes with large values of %a =1, 2.5, 5, 7.5, 10,
12.5, and 15 which resulted in very large perturbations
of the initial mesh.

Oscillatory: ©, = z, + bsin(ax,), where the scalars
a and b control the frequency and amplitude of the
perturbation, respectively. For this test suite, we con-
sidered two different amplitudes, b =.01 and .05, and,
for each amplitude, three different frequencies a = .01,
.05, and .1. The wavelength of the perturbation can
be computed from the frequency by w = 27/a, and we
note that for this test suite w ranges from 63 to 628,
which exceeds the average edge length of the mesh of
approximately 3.6.

We considered two series of tests. In the first, we per-
turbed all or some of the vertices by a small amount
to determine the effect of the type of perturbation on
the mesh. In the second test suite, we perturbed all of
the vertices a large amount to change the scale of the
perturbation.

4.3.1 Small perturbations

All vertices perturbed. For this test suite, we
perturbed all of the vertices a small amount (the values
of a given above that are less than .5). The resulting
quality characteristics of the meshes as the perturba-
tions increase do not vary significantly, and we do not
include the details. In particular, the average inverse
mean ratio value is approximately 1.13, the ratio of
the standard deviation to the average is approximately
.093, and the maximum inverse mean ratio is approx-
imately 2.21 in all cases.

In Table 5, we give the iterations and time to reach
the 100% and 50% improved solutions for the cases in
which we perturb all of the vertices in the mesh ac-
cording to the formulas and parameters given above.

Table 5: Number of iterations and total time to achieve
100% and 50% of the optimal solution as the element

heterogeneity increases.

Newton Coordinate Descent
Pert. a I | Tioo | T50 1 T100 T50
001 | 3 | 11.8 | 7.46 | 325 | 104 3.90
Rand 005 | 4 | 23.6 | 7.53 | 387 | 324 3.84
.01 4 | 23.3 | 7.53 | 414 | 427 3.89
.05 4 | 22.6 | 7.42 | 476 | 664 3.84
Trans Nl 5 30.6 | 8.31 | 502 | 789 4.72
R) 2 7 | 36.7 | 8.35 | 528 | 904 4.79
3 10 | 47.2 | 7.42 | 545 | 956 8.24
Trans .1 5 | 31.1 | 832 | 496 | 800 4.64
(NE) 2 7 | 38.1 | 8.66 | 522 | 905 4.66
3 11 | 59.4 | 13.5 | 539 | 962 7.99
Osc. .01 4 | 25.4 | 829 | 415 | 425 4.75
(b=.01) .05 4 | 24.1 | 795 | 374 | 353 4.77
.1 4 | 227 | 7.56 | 279 | 244 5.59
Osc. .01 4 | 24.7 | 8.32 | 477 | 655 4.76
(b=.05) .05 5 | 224 | 802 | 435 | 550 4.74
1 4 | 21.2 | 7.50 | 338 | 368 5.63

As with the other test suites, if a highly accurate solu-
tion to the optimization problem is sought, the inexact
Newton method outperforms the coordinate descent
method in every case. If the 50% improved solution
is sought, the coordinate descent method outperforms
the inexact Newton method for all the test cases.

In Figure 6, we examine the ratio of the time required
by the inexact Newton method and the coordinate de-
scent method as the desired degree of optimality in-
creases. In all cases considered, as a more improved
solution is sought, the inexact Newton method looks
increasingly attractive. For the random test suite,
however (top left), the coordinate descent method al-
ways outperforms it up to 90% improvement. For the
translational and oscillatory test suites (top middle
and top right), the performance of the coordinate de-
scent method is not as good. In these cases, the lo-
cal nature of the coordinate descent method can only
slowly eliminate the long wavelength errors introduced
by the perturbation scheme. In contrast, the inex-
act Newton method has access to global information
and is able to overcome this difficulty. Thus the co-
ordinate descent method still outperforms the inexact
Newton method for approximate solutions, but at best
the mesh is only 75% optimal at the crossover point.
This degrades to approximately 63% for the oscillatory
case as the degree of perturbation increases. The setup
time is again a contributing factor in determining the
crossover point and requires about 30% of the inexact
Newton solution time compared to approximately 10%
for coordinate descent.
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Table 6: Initial mesh characteristics for increasing NE
shift perturbation of the duct geometry.

Inverse Mean Ratio Element Volume
%a an On max max Tn
Opt. | 1.180 | .109 3.00 42.2 587
1 1.155 | .179 2.72 30.2 546
2.5 | 1.423 | 2.25 283 30.2 .593
5 2.062 | 8.95 | 1.59-10* | 50.1 755
75 | 2.550 | 58.1 | 1.43-10° | 52.7 841
10 | 2.508 | 13.0 | 2.02-10* | 57.8 .865
12.5 | 2.636 | 69.9 | 1.80-10° | 65.5 .869
15 | 2.468 | 7.75 | 9.47-10% | 59.8 .869

Some vertices perturbed. To determine whether

the number of vertices that we perturb affects the rel-
ative performance of the two solvers, we give the ratio
of the inexact Newton method and coordinate descent
method times to achieve various levels of improvement
(see the bottom row of Figure 6) when a subset of
the vertices is perturbed. The percentage of vertices
that were randomly selected to be perturbed is 1%,
10%, and 25% or 1779, 17789, and 44472 vertices, re-
spectively. We show results for only a subset of the
cases analyzed; the results for the cases not shown are
qualitatively the same. In all cases, the inexact New-
ton method is unable to outperform the coordinate
descent method when a suboptimal solution (90% im-
proved or less) is sought. This result is particularly
interesting for the oscillatory and translational per-
turbations (bottom middle and right, respectively). In
these cases, because only a subset of the vertices were
perturbed, the long wavelength errors that affected the
performance of the coordinate descent method are no
longer evident, and the coordinate descent method is
again able to quickly approach the optimal solution.

Conclusion 4: For small random and translational
perturbations of uniform tetrahedral meshes, the coor-
dinate descent method outperforms the inexact New-
ton method if suboptimal solutions to improve shape
are sought. Large wavelength errors, such as those
introduced by the oscillatory perturbations of all the
vertices, present difficulties for the coordinate descent
method. As the perturbations increase in size, they
become increasingly difficult for each method to solve.

4.3.2 Large perturbations

For this test suite, we considered large perturbations
of the NE translational type. In Table 6, we give the
initial mesh quality characteristics for the DuctBig
meshes with translational perturbations correspond-
ing to %a =1, 25,5, 7.5, 10, 12.5, and 15. For com-
parison, we note that the average edge length in the

mesh is 3.6. The value of a corresponds to the max-
imum amount a node was moved in the mesh. Some
nodes may move a smaller distance, determined by an
iterative backtracking procedure, to prevent inverted
elements in the initial mesh. As a increases, the qual-
ity of the initial mesh clearly decreases although that
degradation is not monotonic. The average mean ratio
metric value goes from an average value of 1.18 to over
2.63 with the worst quality element exceeding a mean
ratio metric value of 1.80 - 10°. Element volumes vary
similarly.

Because the objective function used for these problems
is not convex, it is likely that different local solutions
to the optimization problem exist. It is therefore pos-
sible that the solutions for these large perturbation
cases would not be the same for the coordinate de-
scent and inexact Newton methods or the same as the
optimal mesh that we started with. The differences in
solution time in Table 7 could thus be accounted for by
the fact that different solutions are being obtained by
each solver. To study this, we computed the difference
between corresponding vertex locations and if the dif-
ference was less than 1 percent of the average element
edge length (in this case 0.036), we considered them
to be in the same location. In all cases, the maximum
difference between the inexact Newton and coordinate
descent method solutions was approximately 6.27-10~7
indicating that they were converging to the same solu-
tion. The maximum difference between the computed
solution and the initial optimal mesh was .0076 in all
cases, which is well within our tolerance. Thus the
local and global methods are finding the same opti-
mal solution that was found in the unperturbed case,
even when the perturbation is large. Because the same
solution is found in both the coordinate descent and
inexact Newton methods, we conclude that the differ-
ences in solution times is mainly due to differences in
the algorithms and not due to lack of convexity.

The solution time required for each method was con-
siderably more than what was needed for smaller per-
turbations. In general, as the perturbation distance in-
creased and the mesh quality degraded, the total time
to solution increased. It is interesting to note that
as the perturbation increased, the time and number
of iterations required by the inexact Newton method
to find an optimal solution also increased, but re-
mained approximately constant for the coordinate de-
scent method. Even so, the Newton method outper-
formed the coordinate descent method for 100% im-

proved solutions by a factor of 11 (for %a =1)to25

(for %a = 15). In most cases, coordinate descent was
30% to 80% faster for approximate solutions that were
fifty percent improved, but in the case of %a = 2.5
the inexact Newton method was faster for both the
highly improved solution and the approximate solu-

tion.



Table 7: Number of iterations and total time to achieve
100% and 50% of the optimal solution as the perturba-
tion increases.

Newton Coordinate Descent
%a I | Tho | Tso I | Tioo Ts0
1 19 100 | 26.4 | 575 | 1106 19.3
2.5 61 355 | 28.4 | 616 | 1266 35.0
5 68 388 | 42.2 | 632 | 1313 36.5
7.5 83 452 | 52.7 | 635 | 1329 34.1
10 89 503 | 45.7 | 635 | 1347 30.2
125 | 115 | 644 | 59.4 | 635 | 1339 34.0
15 94 525 | 48.2 | 633 | 1328 26.8

The top image in Figure 7 shows the ratio of times re-
quired by the inexact Newton method and coordinate
descent method to achieve certain levels of improve-
ment. (Note that the numbers in the key correspond
to the maximal actual perturbation scaled by the av-
erage element length.) These results are considerably
more interesting than the corresponding plots for in-
creasing problem size and element size heterogeneity
shown in Figures 3 and 5. In particular, in a number of
cases there appear to be several crossover points and
if a very approximate solution is sought (less than 40
percent improved), the inexact Newton method is pre-
ferred to the coordinate descent method. Interestingly
as the desired level of improvement increases between
30-40% and 90%, the coordinate descent method is
preferred. This behavior is very unlike what was seen
in the earlier test cases. To help explain this more
clearly, we include the time history of the objective
function value and gradient norm for the perturba-
tion 2a = 1 in the bottom two images of Figure
7. The coordinate descent method is unable to make
early progress toward the optimal solution because it
does not have access to global information. The in-
exact Newton method is able to overtake it although
its progress is sporadic. After approximately 20 iter-
ations the coordinate descent method begins to make
rapid progress and significantly improves the mesh in a
few iterations, overtaking the inexact Newton method.
As the mesh gets closer to the optimal solution, the
quadratic convergence rates of the Newton method al-
low it to reach the optimal solution more quickly than
the coordinate descent method.

Conclusion 5: Large perturbations from the optimal
mesh result is a significantly more challenging problem
for each of our optimization techniques. In general
the time to solution was significantly larger than was
needed for the other test cases considered in this paper.
Furthermore, several test cases highlighted examples
for which the inexact Newton method is preferred for
suboptimal solutions. If the optimal mesh is desired,
the inexact Newton method is always preferred.
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Figure 7: The ratio of the times required by the inexact
Newton and coordinate descent solvers to achieve certain
levels of improvement as the perturbation size increases.

5. FUTURE WORK

The numerical results show that the block coordinate
descent method is best for making fast improvements
in the shape quality of tetrahedral meshes. The in-
exact Newton method is best when a very accurate
solution to the optimization problem is necessary. We
note that a 50% optimization level may be somewhat
misleading in that it does not indicate the degree of
the accuracy in the solution. For most of the duct
meshes, the iterate at a 50% optimization level has
four or five digits of accuracy in the objective function
value. If the initial quality of the mesh is very poor,
however, then the iterate at a 50% optimization level
may not have any digits of accuracy in the objective
function value. This issue will be explored more fully



in future work.

This study was limited to ideal shape improvement of
tetrahedral meshes; triangular, quadrilateral, and hex-
ahedral meshes were not included in the study. Pre-
liminary experience with planar quadrilateral meshes
shows that the crossover point for our two codes gen-
erally occurs earlier, but further study is warranted.
In particular, the efficiency of the coordinate descent
method is related to the structure of the reference el-
ement. Some of the efficiency in our implementation
for equilateral elements will likely be lost when using
a different reference element. The storage required
when applying a fast coordinate descent method to
an anisotropic mesh in which the reference element
is different for each element in the mesh can also be
significant.

Furthermore, because the global objective function
is not convex, a trust-region method for the inexact
Newton code may perform better since it can han-
dle directions of negative curvature more rigorously.
A limited-memory quasi-Newton method may also be
better than the coordinate descent method at obtain-
ing an approximate solution in a small amount of
time. Efficient implementations of these methods can
be based on the infrastructure developed for the inex-
act Newton and coordinate descent methods.

In conclusion, there are many factors which can af-
fect whether or not one should use a coordinate de-
scent solver or an inexact Newton method for mesh
optimization. The present work identifies some of the
potentially important factors and develops a method-
ology for further investigations on this topic. Future
work will consider remaining open questions includ-
ing consideration of other mesh element types, qual-
ity metrics, objective function templates, and different
applications of mesh optimization such as r-adaptivity
in which the reference element will not be constant as
it was in this study.
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