Skip to main content
Log in

Three-dimensional analysis of Marangoni flow and radial segregation in Ge x Si1-x melt with Czochralski configuration

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In order to examine the flow field and the radial segregation of silicon (Si) in a Ge x Si1-x melt with an idealized Czochralski (Cz) configuration, we conducted a series of unsteady three-dimensional (3-D) numerical simulations under zero-gravity conditions. The effect of convection driven by surface tension on the free surface of the melt was included in the model, by considering thermal, as well as solutal Marangoni convection. The concentration and flow fields at several stages during crystal growth are presented for several temperature differences, driving the Marangoni convection. The simulation results indicate that the flow and concentration fields are axisymmetric for Ma T <  625 and become oscillatory and 3-D for higher values. It was found that the maximum Si concentration difference at the growth interface decreases as thermal Marangoni number increases due to higher flow velocities in the vicinity of the interface. However, temporal fluctuations of Si concentration at the interface increase at higher thermal Marangoni numbers. The effects of aspect ratio (A r) were also considered in the model. It was found that the aspect ratio of the melt in the crucible has a prominent influence on the flow pattern in the melt which, in turn, effects the Si concentration at the growth interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

A r :

aspect ratio, H/r cru

Bi rad :

Biot number for radiation heat transfer, \({\frac{{r_{{\rm cru}}}}{k}\varepsilon \sigma {\left({T + T_{a}} \right)}{\left({T^{2} + T^{2}_{a}} \right)}}\)

C :

dimensionless molar fraction of Si in the melt, C */C * o

C * o :

initial molar fraction of Si in the melt

C * :

molar fraction of Si in the melt

C P :

specific heat capacity, J kg−1 K−1

D :

diffusion coefficient, m2 s−1

ΔT :

reference temperature difference, T hT m

H :

crucible height, m

k :

thermal conductivity, W m−1 K−1

k s :

segregation coefficient

Ma T :

thermal Marangoni number, − ∂γ/∂TTr cru/μα)

Ma C :

solutal Marangoni number, − ∂γ/∂C *(C * o r cru/μα)

P :

dimensionless pressure

Pr :

Prandtl number, ν/α

R :

dimensionless radial distance, r/r cru

R cry :

dimensionless crystal radius, r cry/r cru

r :

radial distance, m

Sc :

Schmidt number, ν/D

U :

dimensionless radial velocity component.

V :

dimensionless circumferential velocity component

W :

dimensionless vertical velocity component

V L :

crystal growth rate, m s−1

r cru :

crucible radius, m

T :

temperature K

t :

dimensionless time

∂γ/∂T :

temperature coefficient of surface tension, N m− 1 K−1

∂γ/∂C * :

concentration coefficient of surface tension, N m−1

z :

vertical distance, m

Z :

dimensionless vertical distance, z/r cru

α:

thermal diffusivity, m2 s−1

σ:

Stefan-Boltzman constant, = 5.67040 × 10− 8 W m−2 K−4

Θ:

dimensionless temperature, (TT m)/ΔT

Θ a :

dimensionless ambient temperature, =  (T aT m)/ΔT

ε:

emmisivity

μ:

dynamic viscosity, kg m− 1 s−1

ν:

kinematic viscosity, m2 s−1

θ:

circumferential direction, rad

ρ:

density, kg m−3

a:

ambient

C :

solutal

cru:

crucible

cry:

crystal

h:

heated wall

m:

melting

T :

thermal

References

  1. Galazka Z, Wilke H (2000) Influence of the Marangoni convection on the flow pattern in the melt during growth of Y3Al5O12 single crystals by the Czochralski method. J Crystal Growth 216:389–398

    Article  Google Scholar 

  2. Li YR, Peng L, Akiyama Y, Imaishi N (2003) Three-dimensional numerical simulation of thermocapillary flow of moderate Prandtl number fluid in an annular pool. J Crystal Growth 259:374–387

    Article  Google Scholar 

  3. Li YR, Imaishi N, Lan P, Wu SY, Hibiya T (2004) Thermocapillary flow in a shallow molten silicon pool with Czochralski configuration. J Crystal Growth 266:88–95

    Article  Google Scholar 

  4. Schwabe D (2002) Buoyant-thermocapillary and pure thermocapillary convective instabilities in Czochralski systems. J Crystal Growth 237–239:1849–1853

    Article  Google Scholar 

  5. Kumar V, Biswas G, Brenner G, Durst F (2003) Effect of thermocapillary convection in an industrial Czochralski crucible: numerical simulation. Int. J Heat Mass Transf 46:1641–1652

    Article  MATH  Google Scholar 

  6. Kumar V, Basu B, Enger S, Brenner G, Durst F (2003) Role of Marangoni convection in Si-Czochralski melts—Part II: 3D predictions with crystal rotation. J Crystal Growth 255:27–39

    Article  Google Scholar 

  7. Zeng Z, Chen J, Mizuseki H, Fukuda T, Kawazoe Y (2004) Three-dimensional unsteady convection in LiCaAlF6-Czochralski growth. J Crystal Growth 266:81–87

    Article  Google Scholar 

  8. Matsui A, Yonenaga I, Sumino K (1998) Czochralski growth of bulk crystals of Ge1-x Si x alloys. J Crystal Growth 183:109–116

    Article  Google Scholar 

  9. Yonenaga I., Murakami Y (1998) Segregation during the seeding process in the Czochralski growth of GeSi alloys. J Crystal Growth 191:399–404

    Article  Google Scholar 

  10. Yonenaga I (1999) Czochralski growth of GeSi bulk alloy crystals. J Crystal Growth 198/199:404

    Article  Google Scholar 

  11. Niu X, Zhang W, Lu G, Jiang Z (2004) Distribution of Ge in high concentration Ge- doped Czochralski-Si crystal. J Crystal Growth 267:424–428

    Article  Google Scholar 

  12. Xiao Q (1997) Numerical simulations of transport processes during Czochralski growth of semiconductor compounds. J Crystal Growth 174:7

    Article  Google Scholar 

  13. Wang JH, Kim DH, Yoo HD (1999) Two-dimensional analysis of axial segregation in batchwise and continuous Czochralski process. J Crystal Growth 198/199:120

    Google Scholar 

  14. Smirnova OV, Kalaev VV, Makarov YN, Abrosimov NV, Rieman H (2004) Simulation of heat transfer and melt flow in Czochralski growth of Si1-x Ge x crystals. J Crystal Growth 266:74–80

    Article  Google Scholar 

  15. Morton JL, Ma N, Bliss FD, Bryant GG (2002) Dopant segregation during liquid-encapsulated Czochralski crystal growth in a steady axial magnetic field. J Crystal Growth 242:471–485

    Article  Google Scholar 

  16. Van Doormaal JP, Raithby GD (1984) Enhancements of the simple method for predicting incompressible fluid flows. J Numer Heat Transf 7:147–163

    MATH  Google Scholar 

  17. Leonard BP (1979) A stable and accurate convective modeling procedure based on quadratic upstream interpolation. J Comput Method Appl Mech Eng 19:59–98

    Article  MATH  Google Scholar 

  18. Stone HL (1968) Iterative solution of implicit approximations of multi-dimensional partial differential equations. SIAM J Numer Anal 5:530–558

    Article  MATH  MathSciNet  Google Scholar 

  19. Hackbush W (1994) Iterative solution of large sparse systems. Springer, Berlin Heidelberg New York

    Google Scholar 

  20. Van Der Vorst HA (1992) BiCGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM J Sci Stat Comput 13:631–644

    Article  MATH  Google Scholar 

  21. Ozoe H, Toh K (1998) A technique to circumvent a singularity at a radial center with application for a three-dimensional cylindrical system. J Numer Heat Transf 33:355–365

    Google Scholar 

  22. Yesilyurt S, Vujisic L, Motakef S, Szofran FR, Volz MP (1999) A numerical investigation of the effect of thermoelectromagnetic convection (TEMC) on the Bridgman growth of Ge1-x Si x . J Crystal Growth 207:278–291

    Article  Google Scholar 

  23. Campbell TA, Schweizer M, Dold P, Cröll A, Benz JKV (2001) Float zone growth and characterization of Ge1-x Si x (x≤10 at%) single crystals. Crystal Growth 226:231–239

    Article  Google Scholar 

  24. Farrell MV, Ma N (2004) Macrosegregation during alloyed semiconductor crystal growth in strong axial and transverse magnetic fields. Int J Heat Mass Transf 47:3047–3055

    Article  MATH  Google Scholar 

  25. Dold P, Kaiser N, Benz KW, Cröll A, Szofran FR, Cobb S, Volz M, Schweizer M (2000) In: Proceedings of 51st International Astronautical Congress, Rio De Janerio, Brasil, pp 1–12

  26. Yonenaga I, Sakurai M, Nonaka M, Ayuzawa T, Sluiter MHF, Kawazoe Y (2003) Local strain relaxation in Czochralski-grown GeSi bulk alloys. Physica B 340–342:854–857

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abbasoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbasoglu, S., Sezai, I. Three-dimensional analysis of Marangoni flow and radial segregation in Ge x Si1-x melt with Czochralski configuration. Engineering with Computers 23, 123–135 (2007). https://doi.org/10.1007/s00366-006-0052-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-006-0052-8

Keywords

Navigation