Skip to main content
Log in

Design curve determination for two-layered wire rope strand using p-version finite element code

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Parametric analysis of a two-layered axially loaded strand is performed using the recently developed p-version finite element code, which describes the geometry well and takes into account all possible inter-wire motions and frictional contact between the wires. A special nonlinear contact theory was developed based on the Hertz-theory. It is assumed that the wires have homogenous, isotropic, linear elastic material properties. The developed code is a tool for designing wire rope strands that require low computer resources and short computational time. Case studies are performed to verify and demonstrate the efficiency and applicability of the method. Design curves are presented according to the strand geometry parameters such as helix angle and ratio of the wire radius in the different layers. The optimal geometry parameters for a given strand can be determined using these design curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

a :

Vector of the displacement parameters

\( {\hat{\mathbf{a}}} \) :

Vector of the additional parameters

\( {\tilde{\mathbf{B}}}_{{\mathbf{q}}} \), \( {\tilde{\mathbf{B}}}_{{\mathbf{a}}} \) :

Approximation matrices for deformations

b :

Binormal unit vector

\( {\varvec{\Upphi}}(\varphi ) \), \( {\hat{\varvec{\Upphi }}}(\varphi ) \) :

Approximation matrices

n :

Normal unit vector

r :

Radius vector of the curved beam centreline

t :

Tangential unit vector

T 0 :

Transformation matrix

A :

Cross-sectional area

E :

Young’s modulus

F z :

Axial force

G :

Shear modulus

H :

Pitch length of the wire

I 1, I 2 :

Moment of inertia of the cross-section calculated to the axis 1 and 2

I p :

Polar moment of inertia

L :

Lame constant

M z :

Torsional moment

R 0 :

Radius of the cylinder

s :

Arc length

U strain :

Strain energy

W external :

Work of the external force

\( \bar{\varphi } \) :

Angle of the cylinder coordinate system

α:

Helix angle

κ :

Curvature

τ :

Twist per unit length

u x u y u z (u 1u 2u 3):

Displacement coordinates in the global (local) coordinate system

χ x χ y χ z (χ 1χ 2χ 3):

Angular displacement coordinates in the global (local) coordinate system

References

  1. Bárkóczi I (1996) Sodronykötél-kézikönyv, FUX Rt, Miskolc (in Hungarian)

  2. Costello GA (1997) Theory of wire rope, 2nd edn. Springer, New York

    Book  Google Scholar 

  3. Costello GA (1983) Stresses in multilayered cables. J Energy Res Technol 105:337–340

    Article  Google Scholar 

  4. Elata D, Eshkenazy R, Weiss MP (2004) The mechanical behavior of a wire rope with an independent wire rope core. Int J Solids Struct 41:1157–1172

    Article  Google Scholar 

  5. Giglio M, Manes A (2005) Life prediction of a wire rope subjected to axial and bending loads. Eng Fail Anal 12:549–568

    Article  Google Scholar 

  6. Jiang WG, Henshall JL (1999) The analysis of termination effects in wire strand using the finite element method. J Strain Anal 34(1):31–38

    Article  Google Scholar 

  7. Jiang WG, Yao MS, Walton JM (1999) A concise finite element model for simple straight wire rope strand. Int J Mech Sci 41:143–161

    Article  MATH  Google Scholar 

  8. Jiang WG, Henshall JL, Walton JM (2000) A concise finite element model for three-layered straight wire rope strand. Int J Mech Sci 42:63–86

    Article  MATH  Google Scholar 

  9. Wen-Guang Jiang, Warby Michael K, Henshall John L (2008) Statically indeterminate contacts in axially loaded wire strand. Eur J Mech A/Solids 27(1):69–78

    Article  Google Scholar 

  10. Kumar K, Botsis J (2001) Contact stresses in multilayered strands under tension and torsion. Trans ASME J Appl Mech 68:432–440

    Article  Google Scholar 

  11. Lanteigne J (1985) Theoretical estimation of the response of helically armored cables to tension, torsion and bending. J Appl Mech 52:423–432

    Article  Google Scholar 

  12. LeClair RA, Costello GA (1986) Axial bending and torsional loading of a strand with friction. Proceedings of the Fifth International OMAE Symposium, Tokyo, Japan, ASME, vol III: 550–555

  13. Beleznai R, Páczelt I (2010) Development of contact-theory for analysis of wire rope strand using p-version finite element method. Proceedings of TMCE 2010 Symposium, Ancona, Italy, pp 789–801

  14. Phillips JW, Costello GA (1985) Analysis of wire ropes with internal-wire-rope cores. Trans ASME 52:510–516

    Article  Google Scholar 

  15. Johanson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  16. Prakash A, Conway Ted A, Costello GA (1992) Compression of a Cord. Trans ASME 59:S213–S216

    Article  Google Scholar 

  17. Raoof M, Kraincanic I (1998) Determination of wire recovery length in steel cables and its practical applications. Comput Struct 68:445–459

    Article  Google Scholar 

  18. Szabó B, Babuska I (1991) Finite element analysis. Wiley-Interscience, New York

    MATH  Google Scholar 

  19. Taktak M, Dammak F, Abid S, Haddar M (2005) A mixed-hybrid finite element for three-dimensional isotropic helical beam analysis. Int J Mech Sci 47:209–229

    Article  MATH  Google Scholar 

  20. Velinsky SA (1985) General nonlinear theory for complex wire ropes. Int J Mech Sci 27:497–507

    Article  Google Scholar 

  21. Wriggers P (2002) Computational contact mechanics. J Wiley & Sons, New York

    Google Scholar 

  22. Zhang DK, Ge SR, Qiang YH (2003) Research on the fatigue and fracture behavior due to the fretting wear of steel wire in hoisting rope. Wear 255:1233–1237

    Article  Google Scholar 

  23. Ghoreishi SR, Messager T, Cartraud P, Davies P (2007) Validity and limitations of linear analytical models for steel wire strands under axial loading, using a 3D FE model. Int J Mech Sci 49:1251–1261

    Article  Google Scholar 

  24. Páczelt I, Mróz Z (2009) On the analysis of steady state sliding wear processes. Tribol Int 42:275–283

    Article  Google Scholar 

  25. Utting WS, Jones N (1987) The response of wire rope strands to axial tensile loads—part I. Experimental results and theoretical predictions. Int J Mech Sci 29(9):605–619

    Article  Google Scholar 

  26. Utting WS, Jones N (1987) The response of wire rope strands to axial tensile loads—part II. Comparison of experimental results and theoretical predictions. Int J Mech Sci 29(9):621–636

    Article  Google Scholar 

Download references

Acknowledgments

The present research was supported by the Hungarian Academy of Sciences, by grant OTKA K67825 and by the project TÁMOP-4.2.2./B-10/1-2010-0008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Róbert Beleznai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beleznai, R., Páczelt, I. Design curve determination for two-layered wire rope strand using p-version finite element code. Engineering with Computers 29, 273–285 (2013). https://doi.org/10.1007/s00366-012-0269-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-012-0269-7

Keywords

Navigation