Skip to main content
Log in

A generalized unconstrained theory and isogeometric finite element analysis based on Bézier extraction for laminated composite plates

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This work presents an isogeometric finite element formulation based on Bézier extraction of the non-uniform rational B-splines (NURBS) in combination with a generalized unconstrained higher-order shear deformation theory (UHSDT) for laminated composite plates. The proposed approach relaxes zero-shear stresses at the top and bottom surfaces of the plates and no shear correction factors are required. A weak form of static, free vibration and transient response analyses for laminated composite plates is then established and is numerically solved using isogeometric Bézier finite elements. NURBS can be written in terms of Bernstein polynomials and the Bézier extraction operator. IGA is implemented with the presence of C°-continuous Bézier elements which allow to easily incorporate into existing finite element codes without adding many changes as the former IGA. As a result, all computations can be performed based on the basis functions defined previously as the same way in finite element method (FEM). Numerical results performed over static, vibration and transient analysis show high efficiency of the present method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Reddy JN (2004) Mechanics of laminated composite plates and shells: theory and analysis, 2nd edn. CRC Press, New York

    MATH  Google Scholar 

  2. Nguyen-Xuan H, Rabczuk T, Nguyen-Thanh N, Nguyen-Thoi T, Bordas S (2010) A node-based smoothed finite element method (NS-FEM) for analysis of Reissner–Mindlin plates. Comput Mech 46:679–701

    Article  MathSciNet  MATH  Google Scholar 

  3. Aydogdu M (2009) A new shear deformation theory for laminated composite plates. Compos Struct 89:94–101

    Article  Google Scholar 

  4. Ambartsumian SA (1958) On the theory of bending plates. Izv Otd Tech Nauk ANSSSR 5:269–277

    Google Scholar 

  5. Bose P, Reddy JN (1998) Analysis of composite plates using various plate theories—Part 1: Formulation and analytical solutions. Struct Eng Mech 6:583–612

    Article  Google Scholar 

  6. Ferreira AJM, Castro LMS, Bertoluzza S (2009) A high order collocation method for the static and vibration analysis of composite plates using a first-order theory. Compos Struct 89:424–432

    Article  Google Scholar 

  7. Reddy JN (1984) A simple higher-order theory for laminated composite plates. J Appl Mech 51:745–752

    Article  MATH  Google Scholar 

  8. Leung AYT (1991) An unconstrained third-order plate theory. Compos Struct 40(4):871–875

    Article  MATH  Google Scholar 

  9. Leung AYT, Junchuan N, Lim CW, Kongjie S (2003) A new unconstrained third- order plate theory for Navier solutions of symmetrically laminated plates. Comput Struct 81:2539–2548

    Article  Google Scholar 

  10. Saidi AR, Rasouli A, Sahraee S (2009) Axisymmetric bending and buckling analysis of thick functionally graded circular plates using unconstrained third-order shear deformation plate theory. Compos Struct 89:110–119

    Article  Google Scholar 

  11. Di S, Rother H (1998) Solution of a laminated cylindrical shell using an unconstrained third-order theory. Comput Struct 69:291–303

    Article  MATH  Google Scholar 

  12. Dinis LMJS, Natal Jorge RM, Belinha J (2011) Static and dynamic analysis of laminated plates based on an unconstrained third order theory and using a radial point interpolator meshless method. Comput Struct 89:1771–1784

  13. Buchter N, Ramm E, Roehl D (1994) Three-dimensional extension of nonlinear shell formulation based on the enhanced assumed strain concept. Int J Numer Meth Eng 37:2551–2568

    Article  MATH  Google Scholar 

  14. Braun M, Bischoff M, Ramm E (1994) Nonlinear shell formulations for complete three-dimensional constitutive laws including composites and laminates. Comput Mech 15:1–18

    Article  MATH  Google Scholar 

  15. Bischoff M, Ramm E (2000) On the physical significance of higher order kinematic and static variables in a three-dimensional shell formulation. Int J Solids Struct 37:6933–6960

    Article  MATH  Google Scholar 

  16. Parisch H (1995) A continuum-based shell theory for non-linear application. Int J Numer Meth Eng 38:1855–1883

    Article  MATH  Google Scholar 

  17. Saman H, Joris JCR, Clemens VV, de René B (2013) An isogeometric solid-like shell element for nonlinear analysis. Int J Numer Methods Eng 95:238–256

    Article  MathSciNet  Google Scholar 

  18. Cottrell JA, Reali A, Bazilevs Y, Hughes TJR (2006) Isogeometric analysis of structural vibrations. Comput Methods Appl Mech Eng 195(41–43):5257–5296

    Article  MathSciNet  MATH  Google Scholar 

  19. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  20. Cottrell JA, Hughes TJR, Bazilevs Y. Isogeometric Analysis. Towards Integration of CAD and FEA, Wiley, 2009

  21. Nguyen-Thanh N, Nguyen-Xuan H, Bordas S, Rabczuk T (2011) Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids. Comput Methods Appl Mech Eng 200:1892–1908

    Article  MathSciNet  MATH  Google Scholar 

  22. Benson DJ, Bazilevs Y, Hsu MC, Hughes TJR (2010) Isogeometric shell analysis: the Reissner–Mindlin shell. Comput Methods Appl Mech Eng 199:276–289

    Article  MathSciNet  MATH  Google Scholar 

  23. Benson DJ, Bazilevs Y, Hsu MC, Hughes TJR (2011) A large deformation, rotation-free, isogeometric shell. Comput Methods Appl Mech Eng 200:1367–1378

    Article  MathSciNet  MATH  Google Scholar 

  24. Cottrell J, Hughes TJR, Reali A (2007) Studies of refinement and continuity in isogeometric analysis. Comput Methods Appl Mech Eng 196:4160–4183

    Article  MathSciNet  MATH  Google Scholar 

  25. Kiendl J, Bletzinger KU, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff-Love element. Comput Methods Appl Mech Eng 198:3902–3914

    Article  MATH  Google Scholar 

  26. Kiendl J, Bazilevs Y, Hsu MC, Wüchner R, Bletzinger KU (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199:2403–2416

    Article  MathSciNet  MATH  Google Scholar 

  27. Thai HC, Nguyen-Xuan H, Nguyen-Thanh N, Le TH, Nguyen-Thoi T, Rabczuk T (2012) Static, free vibration, and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach. Int J Numer Meth Eng 91:571–603

    Article  MathSciNet  MATH  Google Scholar 

  28. Kapoor H, Kapania RK (2012) Geometrically nonlinear nurbs isogeometric finite element analysis of laminated composite plates. Compos Struct 94:3434–3447

    Article  Google Scholar 

  29. Thai HC, Ferreira AJM, Carrera E, Nguyen-Xuan H (2013) Isogeometric analysis of laminated composite and sandwich plates using a layerwise deformation theory. Compos Struct 104:196–214

    Article  Google Scholar 

  30. Nguyen-Xuan H, Thai HC, Nguyen-Thoi T (2013) Isogeometric finite element analysis of composite sandwich plates using a new higher order shear deformation theory. Compos Part B 55:558–574

    Article  Google Scholar 

  31. Thai HC, Nguyen-Xuan H, Bordas SPA, Nguyen-Thanh N, Rabczuk T (2015) Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory. Mech Adv Mater Struct 22:451–469

    Article  Google Scholar 

  32. Tran VL, Ferreira AJ, Nguyen-Xuan H (2013) Isogeometric approach for analysis of functionally graded plates using higher-order shear deformation theory. Compos Part B 51:368–383

    Article  Google Scholar 

  33. Lezgy-Nazargah M, Vidal P, Polit O (2015) NURBS-based isogeometric analysis of laminated composite beams using refined sinus model. Eur J Mech A/Solids 53:34–47

    Article  MathSciNet  Google Scholar 

  34. Valizadeh N, Ghorashi SSh, Yousefi H, Bui TQ, Rabczuk T (2012) Transient analysis of laminated composite plates using isogeometric analysis. The Eighth International Conference on Engineering Computational Technology, Civil-Comp Press, Stirlingshire, Scotland

  35. Borden MJ, Scott MA, Evans JA, Hughes TJR (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. Int J Numer Meth Eng 86:15–47

    Article  MathSciNet  MATH  Google Scholar 

  36. Scott MA, Borden MJ, Verhoosel CV, Sederberg TW, Hughes TJR (2011) Isogeometric finite element data structures based on Bézier extraction of T-splines. Int J Numer Meth Eng 88:126–156

    Article  MathSciNet  MATH  Google Scholar 

  37. Thomas DC, Scott MA, Evans JA, Tew K, Evans EJ (2015) Bézier projection: a unified approach for local projection and quadrature-free refinement and coarsening of NURBS and T-splines with particular application to isogeometric design and analysis. Comput Methods Appl Mech Eng 284:55–105

    Article  MathSciNet  Google Scholar 

  38. Pagano NJ (1970) Exact solutions for rectangular bidirectional composites and sandwich plates. J Compos Mater 4:20–34

    Google Scholar 

  39. Luo JZ, Liu TG, Zhang T (2004) Three-dimensional linear analysis for composite axially symmetrical circular plates. Int J Solids Struct 4:3689–3706

    Article  MATH  Google Scholar 

  40. Timoshenko SP, Goodier JN (1951) Theory of Elasticity. McGraw-Hill Book Company, Inc., New York

  41. Liew KM (1992) Response of plates of arbitrary shape subject to static loading. J Eng Mech ASME 118:1783–1794

    Article  Google Scholar 

  42. Liew KM (1994) Vibration of clamped circular symmetric laminates. J. V J Vib Acoust-ASME 116:141–145

    Article  Google Scholar 

  43. Ferreira AJM (2003) A formulation of the multiquadric radial basis function method for the analysis of laminated composite plates. Compos Struct 59:385–392

    Article  Google Scholar 

  44. Liew KM, Huang YQ, Reddy JN (2003) Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method. Comput Methods Appl Mech Eng 192:2203–2222

    Article  MATH  Google Scholar 

  45. Khdeir AA, Librescu L (1988) Analysis of symmetric cross-ply elastic plates using a higher-order theory -part II: buckling and free vibration. Compos Struct 9:259–277

    Article  Google Scholar 

  46. Zhen W, Wanji C (2006) Free vibration of laminated composite and sandwich plates using global-local higher-order theory. J Sound Vib 298:333–349

    Article  Google Scholar 

  47. Matsunaga H (2000) Vibration and stability of cross-ply laminated composite plates according to a global higher-order plate theory. Compos Struct 48:231–244

    Article  Google Scholar 

  48. Cho KN, Bert CW, Striz AG (1991) Free vibration of laminated rectangular plates analyzed by higher-order individual-layer theory. J Sound Vib 145:429–442

    Article  Google Scholar 

  49. Thai HC, Ferreira AJM, Bordas SPA, Rabczuk T, Nguyen-Xuan H (2014) Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory. Eur J Mech A/Solids 43:89–108

    Article  Google Scholar 

  50. Khdeir AA, Reddy JN (1989) Exact solution for the transient response of symmetric cross-ply laminates using a higher-order plate theory. Compos Sci Tech 34:205–224

    Article  Google Scholar 

  51. Wang YY, Lam KY, Liu GR (2001) A strip element method for the transient analysis of symmetric laminated plates. Int J Solids Struct 38:241–259

    Article  MATH  Google Scholar 

  52. Kapuria S, Dube GP, Dumir PC, Sengupta S (1997) Levy-type piezothermoelastic solution for hybrid plate by using first-order shear deformation theory. Compos Part B 28:535–546

    Article  Google Scholar 

Download references

Acknowledgments

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 107.02-2014.24.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Nguyen-Xuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, L.B., Thai, C.H. & Nguyen-Xuan, H. A generalized unconstrained theory and isogeometric finite element analysis based on Bézier extraction for laminated composite plates. Engineering with Computers 32, 457–475 (2016). https://doi.org/10.1007/s00366-015-0426-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-015-0426-x

Keywords

Navigation