Skip to main content
Log in

Numerical techniques for solving system of nonlinear inverse problem

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, based on the cubic B-spline finite element (CBSFE) and the radial basis functions (RBFs) methods, the inverse problems of finding the nonlinear source term for system of reaction–diffusion equations are studied. The approach of the proposed methods are to approximate unknown coefficients by a polynomial function whose coefficients are determined from the solution of minimization problem based on the overspecified data. In fact, this work considers a comparative study between the cubic B-spline finite element method and radial basis functions method. The stability and convergence analysis for these problems are investigated and some examples are given to illustrate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beck JV, Blackwell B, Haji-sheikh A (1996) Comparison of some inverse heat conduction methods using experimental data. Int J Heat Mass Transf 3:3649–3657

    Article  Google Scholar 

  2. Pourgholi R, Azizi N, Gasimov YS, Aliev F, Khalafi HK (2009) Removal of numerical instability in the solution of an inverse heat conduction problem. Commun Nonlinear Sci Numer Simul 14(6):2664–2669

    Article  MathSciNet  MATH  Google Scholar 

  3. Pourgholi R, Dana H, Tabasi SH (2014) Solving an inverse heat conduction problem using genetic algorithm: sequential and multi-core parallelization approach. Appl Math Model 38(7):1948–1958

    Article  MathSciNet  Google Scholar 

  4. Shenefelt JR, Luck R, Taylor RP, Berry JT (2002) Solution to inverse heat conduction problems employing singular value decomposition and model-reduction. Int J Heat Mass Transf 45:67–74

    Article  MATH  Google Scholar 

  5. Tikhonov AN, Arsenin VY (1977) Solution of ill-posed problems. V.H. Winston and Sons, Washington

    MATH  Google Scholar 

  6. Alifanov OM (1994) Inverse heat transfer problems. Springer, New York

    Book  MATH  Google Scholar 

  7. Pourgholi R, Rostamian M (2010) A numerical technique for solving IHCPs using Tikhonov regularization method. Appl Math Model 34(8):2102–2110

    Article  MathSciNet  MATH  Google Scholar 

  8. Beck JV, Blackwell B, St CR (1985) Clair, inverse heat conduction: ill posed problems. Wiley, New York

    Google Scholar 

  9. Duchateau P, Rundell W (1985) Unicity in an inverse problem for an unknown reaction term in a reaction diffusion equation. J Differ Equ 59(2):155–164

  10. Muzylev NV (1980) Uniqueness theorems for some convergence problems of heat conduction. USSR Comput Math Phys 20(2):120–134

  11. Pilant MS, Rundell W (1986) An inverse problem for a nonlinear parabolic equation. Commun Partial Differ Equ 11(4):445–457

  12. Pilant MS, Rundell W (1988) Fixed point methods for a nonlinear parabolic inverse coefcient problem. Commun Partial Differ Equ 13(4):469–549

  13. Anger G (1990) Inverse problems in differential equations. Plenum, New York

    MATH  Google Scholar 

  14. Nanda A, Das PC (2000) Determination of the non-linear reaction term in a coupled reaction–diffusion system. Numer Funct Anal Optim 21(3&4):489–508

  15. Courant R (1943) Variational methods for the solution of problems of equilibrium and vibrations. Bull Am Math Soc 49:1–23

    Article  MathSciNet  MATH  Google Scholar 

  16. Bangerth W, Joshi A (2009) Adaptive finite element methods for nonlinear inverse problems. In: Proceedings of the 2009 ACM symposium on Applied Computing, pp 1002–1006

  17. Beilina L, Johnson C (2001) A hybrid FEM/FDM method for an inverse scattering problem. In: Numerical Mathematics and Advanced Applications - ENUMATH 2001. Springer-Verlag, Berlin, pp 545–556

  18. Beilina L (2003) Adaptive finite element/difference method for inverse elastic scattering waves. Appl Comput Math 2:119–134

    MathSciNet  MATH  Google Scholar 

  19. Ling X, Keanini RG, Cherukuri HP (2003) A non-iterative finite element method for inverse heat conduction problems. Int J Numer Methods Eng 56:1315–1334

    Article  MATH  Google Scholar 

  20. Kansa EJ (1990) Multiquadricsa scattered data approximation scheme with applications to computational fluid dynamics—I. Comput Math Appl 19:127–145

    Article  MathSciNet  MATH  Google Scholar 

  21. Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 76:1905–1915

    Article  Google Scholar 

  22. Hon YC, Mao XZ (1998) An efficient numerical scheme for Burgers equation. Appl Math Comput 95:37–50

    MathSciNet  MATH  Google Scholar 

  23. Hon YC, Cheung KF, Mao XZ, Kansa EJ (1999) Multiquadric solution for shallow water equations. J Hydraul Eng 125:524–533

    Article  Google Scholar 

  24. Zerroukat M, Power H, Chen CS (1992) A numerical method for heat transfer problem using collocation and radial basis functions. Int J Numer Methods Eng 42:1263–1278

    Article  MATH  Google Scholar 

  25. Hon YC, Mao XZ (1999) A radial basis function method for solving options pricing model. Financ Eng 8(1):31–49

    Google Scholar 

  26. Marcozzi M, Choi S, Chen CS (2001) On the use of boundary conditions for variational formulations arising in financial mathematics. Appl Math Comput 124:197–214

    MathSciNet  MATH  Google Scholar 

  27. Fasshauer GE (2007) Meshfree Approximation Methods with Matlab: (With CD-ROM), vol 6. World Scientific Publishing Co Inc

  28. Hon YC, Wu Z (2000) A numerical computation for inverse boundary determination problem. Eng Anal Bound Elem 24:599–606

    Article  MATH  Google Scholar 

  29. Li J (2004) A radial basis meshless method for solving inverse boundary value problems. Commun Numer Methods Eng 20:51–60

    Article  MathSciNet  MATH  Google Scholar 

  30. Li J (2005) Application of radial basis meshless methods to direct and inverse biharmonic boundary value problems. Commun Numer Methods Eng 21:169–182

    Article  MathSciNet  MATH  Google Scholar 

  31. Cheng AH-D, Cabral JJSP (2005) Direct solution of ill-posed boundary value problems by radial basis function collocation method. Int J Numer Methods Eng 64:45–64

    Article  MathSciNet  MATH  Google Scholar 

  32. Ma L, Wu Z (2011) Radial basis functions method for parabolic inverse problem. Int J Comput Math 88(2):384–395

    MathSciNet  MATH  Google Scholar 

  33. Bayona V, Moscoso M, Carretero M, Kindelan M (2010) RBF-FD formulas and convergence properties. J Comput Phys 229:8281–8295

    Article  MATH  Google Scholar 

  34. Fasshauer GE, Zhang JG (2007) On choosing “optimal” shape parameters for RBF approximation. Numer Algorithm 45:345–368

    Article  MathSciNet  MATH  Google Scholar 

  35. Tikhonov AN, Arsenin VY (1977) On the solution of ill-posed problems. Wiley, New York

    MATH  Google Scholar 

  36. Hansen PC (1992) Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev 34:561–580

    Article  MathSciNet  MATH  Google Scholar 

  37. Lawson CL, Hanson RJ (1995) Solving least squares problems. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  38. Elden L (1984) A note on the computation of the generalized cross-validation function for ill-conditioned least squares problems. BIT 24:467–472

    Article  MathSciNet  MATH  Google Scholar 

  39. Golub GH, Heath M, Wahba G (1979) Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21:215–223

    Article  MathSciNet  MATH  Google Scholar 

  40. Wahba G (1990) Spline models for observational data. SIAM, Philadelphia

  41. Martin L, Elliott L, Heggs PJ, Ingham DB, Lesnic D, Wen X (2006) Dual reciprocity boundary element method solution of the Cauchy problem for Helmholtz-type equations with variable coefficients. J. Sound Vib 297:89–105

    Article  MATH  Google Scholar 

  42. Dehghan M, Tatari M (2006) Determination of a control parameter in a one-dimensional parabolic equation using the method of radial basis functions. Mathematical and Computer Modelling 44:1160–1168

    Article  MathSciNet  MATH  Google Scholar 

  43. Cabeza JMG, Garcia JAM, Rodriguez AC (2005) A Sequential Algorithm of Inverse Heat Conduction Problems Using Singular Value Decomposition. International Journal of Thermal Sciences 44:235–244

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Pourgholi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourgholi, R., Tabasi, S.H. & Zeidabadi, H. Numerical techniques for solving system of nonlinear inverse problem. Engineering with Computers 34, 487–502 (2018). https://doi.org/10.1007/s00366-017-0554-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-017-0554-6

Keywords

Mathematics Subject Classification

Navigation