Skip to main content
Log in

Turing models in the biological pattern formation through spectral meshless radial point interpolation approach

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In the present paper, the spectral meshless radial point interpolation (SMRPI) technique is applied to the solution of pattern formation in nonlinear reaction diffusion systems. Firstly, we obtain a time discrete scheme by approximating the time derivative via a finite difference formula, then we use the SMRPI approach to approximate the spatial derivatives. This method is based on a combination of meshless methods and spectral collocation techniques. The point interpolation method with the help of radial basis functions is used to construct shape functions which act as basis functions in the frame of SMRPI. In the current work, to eliminate the nonlinearity, a simple predictor–corrector (P–C) scheme is performed. The effect of parameters and conditions are studied by considering the well-known Schnakenberg model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhu J, Zhang Y-T, Newman SA, Alber M (2009) Application of discontinuous Galerkin methods for reaction-diffusion systems in developmental biology. J Sci Comput 40(1–3):391–418

    Article  MathSciNet  MATH  Google Scholar 

  2. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser B Biol Sci 237(641):37–72

    Article  MathSciNet  MATH  Google Scholar 

  3. Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12(1):30–39

    Article  MATH  Google Scholar 

  4. Prigogine I, Lefever R (1968) Symmetry breaking instabilities in dissipative systems. II. J Chem Phys 48(4):1695–1700

    Article  Google Scholar 

  5. Schnakenberg J (1979) Simple chemical reaction systems with limit cycle behaviour. J Theor Biol 81(3):389–400

    Article  MathSciNet  Google Scholar 

  6. Thomas D (1975) Artificial enzyme membranes, transport, memory, and oscillatory phenomena. In: Thomas D, Kernevez JP (eds) Analysis and control of immobilized enzyme systems. Springer, Berlin, Heidelberg, New York, pp 115–150

    Google Scholar 

  7. Gray P, Scott SK (1983) Autocatalytic reactions in the isothermal, continuous stirred tank reactor: isolas and other forms of multistability. Chem Eng Sci 38(1):29–43

    Article  Google Scholar 

  8. Gray P, Scott SK (1984) Autocatalytic reactions in the isothermal, continuous stirred tank reactor: oscillations and instabilities in the system A+ 2B\(\rightarrow\) 3B; B\(\rightarrow\) C. Chem Eng Sci 39(6):1087–1097

    Article  Google Scholar 

  9. Aragón JL, Torres M, Gil D, Barrio RA, Maini PK (2002) Turing patterns with pentagonal symmetry. Phys Rev E 65(5):051913

    Article  MathSciNet  Google Scholar 

  10. Aragón JL, Varea C, Barrio RA, Maini PK (1998) Spatial patterning in modified turing systems: application to pigmentation patterns on marine fish. Forma 13(3):213–221

    Google Scholar 

  11. Barrio RA, Varea C, Aragón JL, Maini PK (1999) A two-dimensional numerical study of spatial pattern formation in interacting turing systems. Bull Math Biol 61(3):483–505

    Article  MATH  Google Scholar 

  12. Barrio RA, Maini PK, Aragón JL, Torres M (2002) Size-dependent symmetry breaking in models for morphogenesis. Phys D Nonlinear Phenom 168:61–72

    Article  MathSciNet  MATH  Google Scholar 

  13. Shirzadi A, Sladek V, Sladek J (2013) A local integral equation formulation to solve coupled nonlinear reaction-diffusion equations by using moving least square approximation. Eng Anal Bound Elem 37(1):8–14

    Article  MathSciNet  MATH  Google Scholar 

  14. Murray JD (1993) Mathematical biology. Springer, Heidelberg

    Book  MATH  Google Scholar 

  15. Hundsdorfer W, Verwer JG (2013) Numerical solution of time-dependent advection-diffusion-reaction equations. Springer Science & Business Media, New York

    MATH  Google Scholar 

  16. Kernevez JP, Thomas D (1975) Numerical analysis and control of some biochemical systems. Appl Math Optim 1(3):222–285

    Article  MathSciNet  MATH  Google Scholar 

  17. Dehghan M, Abbaszadeh M, Mohebbi A (2016) The use of element free Galerkin method based on moving Kriging and radial point interpolation techniques for solving some types of Turing models. Eng Anal Bound Elem 62:93–111

    Article  MathSciNet  MATH  Google Scholar 

  18. Twizell EH, Gumel AB, Cao Q (1999) A second-order scheme for the Brusselator reaction–diffusion system. J Math Chem 26(4):297–316

    Article  MathSciNet  MATH  Google Scholar 

  19. Madzvamuse A, Maini PK (2007) Velocity-induced numerical solutions of reaction-diffusion systems on continuously growing domains. J Comput Phys 225(1):100–119

    Article  MathSciNet  MATH  Google Scholar 

  20. Shakeri F, Dehghan M (2011) The finite volume spectral element method to solve turing models in the biological pattern formation. Comput Math Appl 62(12):4322–4336

    Article  MathSciNet  MATH  Google Scholar 

  21. Madzvamuse A, Chung AHW (2014) Fully implicit time-stepping schemes and non-linear solvers for systems of reaction–diffusion equations. Appl Math Comput 244:361–374

    MathSciNet  MATH  Google Scholar 

  22. Sladek V, Sladek J, Shirzadi A (2015) The local integral equation method for pattern formation simulations in reaction–diffusion systems. Eng Anal Bound Elem 50:329–340

    Article  MathSciNet  MATH  Google Scholar 

  23. Campagna R, Cuomo S, Giannino F, Severino G, Toraldo G (2018) A semi-automatic numerical algorithm for turing patterns formation in a reaction-diffusion model. IEEE Access 6:4720–4724

    Article  Google Scholar 

  24. Campagna R, Brancaccio M, Cuomo S, Mazzoleni S, Russo L, Siettos K, Giannino F (2017) Numerical approaches to model perturbation fire in turing pattern formations. In: AIP conference proceedings, vol 1906, p 100011. AIP Publishing

  25. Burrage K, Hale N, Kay D (2012) An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations. SIAM J Sci Comput 34(4):A2145–A2172

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhuang P, Liu F, Turner I, YuanTong G (2014) Finite volume and finite element methods for solving a one-dimensional space-fractional Boussinesq equation. Appl Math Model 38(15):3860–3870

    Article  MathSciNet  MATH  Google Scholar 

  27. Katsikadelis JT (2011) The BEM for numerical solution of partial fractional differential equations. Comput Math Appl 62(3):891–901

    Article  MathSciNet  MATH  Google Scholar 

  28. Fasshauer GE (2007) Meshfree approximation methods with MATLAB, vol 6. World Scientific, Singapore

    Book  MATH  Google Scholar 

  29. Fasshauer GE, Zhang JG (2007) On choosing optimal shape parameters for RBF approximation. Numer Algorithms 45(1–4):345–368

    Article  MathSciNet  MATH  Google Scholar 

  30. Shivanian E, Jafarabadi A (2017) Numerical solution of two-dimensional inverse force function in the wave equation with nonlocal boundary conditions. Inverse Probl Sci Eng 25(12):1743–1767

    Article  MathSciNet  MATH  Google Scholar 

  31. Shivanian E, Jafarabadi A (2018) An inverse problem of identifying the control function in two and three-dimensional parabolic equations through the spectral meshless radial point interpolation. Appl Math Comput 325:82–101

    MathSciNet  MATH  Google Scholar 

  32. Shivanian E, Jafarabadi A (2017) Error and stability analysis of numerical solution for the time fractional nonlinear Schrödinger equation on scattered data of general-shaped domains. Numer Methods Partial Differ Equ 33(4):1043–1069

    Article  MATH  Google Scholar 

  33. Jafarabadi A, Shivanian E (2018) Numerical simulation of nonlinear coupled Burgers equation through meshless radial point interpolation method. Eng Anal Bound Elem 95:187–199

    Article  MathSciNet  MATH  Google Scholar 

  34. Wendland H (1998) Error estimates for interpolation by compactly supported radial basis functions of minimal degree. J Approx Theory 93(2):258–272

    Article  MathSciNet  MATH  Google Scholar 

  35. Shivanian E (2015) A new spectral meshless radial point interpolation (SMRPI) method: a well-behaved alternative to the meshless weak forms. Eng Anal Bound Elem 54:1–12

    Article  MathSciNet  MATH  Google Scholar 

  36. Shivanian E, Jafarabadi A (2017) Inverse Cauchy problem of annulus domains in the framework of spectral meshless radial point interpolation. Eng Comput 33(3):431–442

    Article  MATH  Google Scholar 

  37. Dehghan M, Ghesmati A (2010) Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput Phys Commun 181(4):772–786

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the reviewers for carefully reading this paper and for their comments and suggestions which have improved the paper. The authors also acknowledge financial support from the Imam Khomeini International University project IKIU-11829.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elyas Shivanian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivanian, E., Jafarabadi, A. Turing models in the biological pattern formation through spectral meshless radial point interpolation approach. Engineering with Computers 36, 271–282 (2020). https://doi.org/10.1007/s00366-018-00698-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-018-00698-6

Keywords

Navigation