Skip to main content
Log in

Analysis and optimal design of scissor-link foldable structures

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This paper presents a finite element method for the analysis of scissor-link foldable structures. These structures are capable of deforming from compact form to expanded form, and vice versa. Due to their complex mechanism, it is difficult and time-consuming to simulate foldable structures in analysis softwares, while the proposed method of this paper makes it easy to perform the analysis in a simple manner. In addition, this paper uses two different multi-objective meta-heuristic algorithms, NSGAII and MOCBO, to perform optimum design of foldable structures. The purpose is to find designs that result in minimum weight and minimum volume of the structures satisfying all the constraints consisting of maximum stress, elements buckling, and permissible displacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Mira LA, Thrall AP, De Temmerman N (2014) Deployable scissor arch for transitional shelters. Autom Construct 43:123–131. https://doi.org/10.1016/j.autcon.2014.03.014

    Article  Google Scholar 

  2. Shan W (1992) Computer analysis of foldable structures. Comput Struct 42(6):903–912. https://doi.org/10.1016/0045-7949(92)90102-6

    Article  MATH  Google Scholar 

  3. Kaveh A, Davaran A (1996) Analysis of pantograph foldable structures. Comput Struct 59(1):131–140. https://doi.org/10.1016/0045-7949(95)00231-6

    Article  MATH  Google Scholar 

  4. Escrig F (1985) Expandable space structures. Int J Space Struct 1(2):79–91. https://doi.org/10.1177/026635118500100203

    Article  Google Scholar 

  5. Hernandez C, Transformables E, Estran I (1988) Geometry of expanable structures. In: Tecnologia y Construction, vol. 4, pp 103–118 (Caracas)

  6. Escrig F, Valcarcel JP (1993) Geometry of expandable space structures. Int J Space Struct 8(1–2):71–84. https://doi.org/10.1177/0266351193008001-208

    Article  Google Scholar 

  7. Escrig F, Sanchez J, Valcarcel JP (1996) Two way deployable spherical grids. Int J Space Struct 11(1–2):257–274. https://doi.org/10.1177/026635119601-231

    Article  Google Scholar 

  8. Escrig F, Sanchez J (2006) New designs and geometries of deployable scissor structures. In: Proceedings of Adaptables2006, TU/e, international conference on adaptable building structures Eindhoven (The Netherlands), pp 5–18

  9. Kaveh A, Mahdavi VR (2014) Colliding bodies optimization: a novel meta-heuristic method. Comput Struct 139:18–27. https://doi.org/10.1016/j.compstruc.2014.04.005

    Article  Google Scholar 

  10. Kaveh A, Ilchi Ghazaan M (2017) A new meta-heuristic algorithm: vibrating particles system. Scientia Iranica Trans A Civ Eng 24(2):551–566

    Article  MATH  Google Scholar 

  11. Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv Eng Softw 110: 69–84. https://doi.org/10.1016/j.advengsoft.2017.03.014

    Article  Google Scholar 

  12. Kaveh A, Jafarvand A, Barkhordari MA (1999) Optimal design of pantograph foldable structures. Int J Space Struct 14(4):295–302. https://doi.org/10.1260/0266351991494911

    Article  Google Scholar 

  13. Kaveh A, Shojaee S (2004) Optimal design of scissor-link foldable structures using genetic algorithms. Paper 94 from CCP: 80. ISBN:0-948749-98-9

  14. Kaveh A, Shojaee S (2007) Optimal design of scissor-link foldable structures using ant colony optimization algorithm. Comput Aided Civ Infrastruct Eng 22(1):56–64. https://doi.org/10.1111/j.1467-8667.2006.00470.x

    Article  Google Scholar 

  15. Alegria Mira L, Thrall AP, De Temmerman N (2016) The universal scissor component: optimization of a reconfigurable component for deployable scissor structures. Eng Optim 48(2):317–333. https://doi.org/10.1080/0305215X.2015.1011151

    Article  MathSciNet  Google Scholar 

  16. Thrall AP, Zhu M, Guest JK, Paya-Zaforteza I, Adriaenssens S (2012) Structural optimization of deploying structures composed of linkages. J Comput Civ Eng 28(3):04014010. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000272

    Article  Google Scholar 

  17. Koumar A, Tysmans T, De Temmerman N, Coelho RF, Mira LA (2014) Multi-criteria optimization of a barrel vault structure for emergency relief. In: Proceedings of the symposium: shells, membranes and spatial structures: footprints (IASS-SLTE’14)

  18. Koumar A, Tysmans T, Filomeno Coelho R, De Temmerman N (2017) An automated structural optimisation methodology for scissor structures using a genetic algorithm. Appl Comput Intell Soft Comput. https://doi.org/10.1155/2017/6843574 2017.

    Google Scholar 

  19. Deb K, Pratap A, Agarwal S, Meyarivan TAMT. (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197. https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  20. Panda A, Pani S (2016) Multi-objective colliding bodies optimization. In: Proceedings of fifth international conference on soft computing for problem solving. Springer, Singapore, pp 651–664. https://doi.org/10.1007/978-981-10-0448-3_54

  21. Kaveh A, Ilchi Ghazaan M (2014) Computer codes for colliding bodies optimization and its enhanced version. Int J Optim Civ Eng 4(3):321–332

    Google Scholar 

  22. Gantes CJ, Connor JJ, Logcher RD, Rosenfeld Y (1989) Structural analysis and design of deployable structures. Comput Struct 32(3–4):661–669. https://doi.org/10.1016/0045-7949 (89)90354-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kaveh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaveh, A., Abedi, M. Analysis and optimal design of scissor-link foldable structures. Engineering with Computers 35, 593–604 (2019). https://doi.org/10.1007/s00366-018-0618-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-018-0618-2

Keywords

Navigation