Skip to main content
Log in

On the numerical solution of two-dimensional integral equations using a meshless local discrete Galerkin scheme with error analysis

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This investigation presents a simple and effective method for numerically solving two-dimensional Fredholm integral equations of the second kind on non-rectangular domains. The general framework of the current scheme is based on the Galerkin method together with moving least squares (MLS) technique constructed on scattered points in which all integrals are approximated by a suitable quadrature formula. The MLS approach estimates an unknown function utilizing a locally weighted least square polynomial fitting. The method does not require any cell structures, so it is meshless and consequently independent of the geometry of the domain. The algorithm of the presented scheme is attractive and easy to implement on computers. Furthermore, the error bound and the convergence rate of the presented method are obtained. Illustrative examples clearly show the reliability and the efficiency of the new method and confirm the theoretical error estimates provided in the current paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abdou MA, Badr AA, Soliman MB (2011) On a method for solving a two-dimensional nonlinear integral equation of the second kind. J Comput Appl Math 235(12):3589–3598

    Article  MathSciNet  MATH  Google Scholar 

  2. Armentano MG (2002) Error estimates in sobolev spaces for moving least square approximations. SIAM J Numer Anal 39(1):38–51

    Article  MathSciNet  MATH  Google Scholar 

  3. Armentano MG, Duron RG (2001) Error estimates for moving least square approximations. Appl Numer Math 37(3):397–416

    Article  MathSciNet  MATH  Google Scholar 

  4. Assari P, Adibi H, Dehghan M (2013) A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with error analysis. J Comput Appl Math 239(1):72–92

    Article  MathSciNet  MATH  Google Scholar 

  5. Assari P, Dehghan M (2018) A meshless Galerkin scheme for the approximate solution of nonlinear logarithmic boundary integral equations utilizing radial basis functions. J Comput Appl Math 333:362–381

    Article  MathSciNet  MATH  Google Scholar 

  6. Assari P, Adibi H, Dehghan M (2014) The numerical solution of weakly singular integral equations based on the meshless product integration (MPI) method with error analysis. Appl Numer Math 81:76–93

    Article  MathSciNet  MATH  Google Scholar 

  7. Assari P, Dehghan M (2017) A meshless method for the numerical solution of nonlinear weakly singular integral equations using radial basis functions. Eur Phys J Plus 132:1–23

    Article  MATH  Google Scholar 

  8. Assari P, Dehghan M (2017) The numerical solution of two-dimensional logarithmic integral equations on normal domains using radial basis functions with polynomial precision. Eng Comput 33(4):853–870

    Article  Google Scholar 

  9. Assari P, Dehghan M (2017) A meshless discrete collocation method for the numerical solution of singular-logarithmic boundary integral equations utilizing radial basis functions. Appl Math Comput 315:424–444

    MathSciNet  MATH  Google Scholar 

  10. Assari P, Dehghan M (2018) Solving a class of nonlinear boundary integral equations based on the meshless local discrete Galerkin (MLDG) method. Appl Numer Math 123:137–158

    Article  MathSciNet  MATH  Google Scholar 

  11. Atkinson KE (1973) The numerical evaluation of fixed points for completely continuous operators. SIAM J Numer Anal 10:799–807

    Article  MathSciNet  MATH  Google Scholar 

  12. Atkinson KE (1997) The numerical solution of integral equations of the second kind. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  13. Atkinson KE, Bogomolny A (1987) The discrete Galerkin method for integral equations. Math Comput 48:595–616

    Article  MathSciNet  MATH  Google Scholar 

  14. Atluri SN, Zhu T (1998) A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput Mech 22(2):117–127

    Article  MathSciNet  MATH  Google Scholar 

  15. Babolian E, Bazm S, Lima P (2011) Numerical solution of nonlinear two-dimensional integral equations using rationalized Haar functions. Commun Nonlinear Sci Numer Simul 16(3):1164–1175

    Article  MathSciNet  MATH  Google Scholar 

  16. Barnett G, Tongo LD (2008) Data structures and algorithms: annotated reference with examples. DotNetSlackers, Cambridge

    Google Scholar 

  17. Bazm S, Babolian E (2012) Numerical solution of nonlinear two-dimensional Fredholm integral equations of the second kind using gauss product quadrature rules. Commun Nonlinear Sci Numer Simul 17(3):1215–1223

    Article  MathSciNet  MATH  Google Scholar 

  18. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256

    Article  MathSciNet  MATH  Google Scholar 

  19. Boersma J, Danicki E (1993) On the solution of an integral equation arising in potential problems for circular and elliptic disks. SIAM J Appl Math 53(4):931–941

    Article  MathSciNet  MATH  Google Scholar 

  20. Bremer Rokhlin VJ, Sammis I (2010) Universal quadratures for boundary integral equations on two-dimensional domains with corners. J Comput Phys 229:8259–8280

    Article  MathSciNet  MATH  Google Scholar 

  21. Buhmann MD (2003) Radial basis functions: theory and implementations. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  22. Carutasu V (2001) Numerical solution of two-dimensional nonlinear Fredholm integral equations of the second kind by spline functions. Gen Math 9:31–48

    MathSciNet  MATH  Google Scholar 

  23. Chen W, Lin W (2001) Galerkin trigonometric wavelet methods for the natural boundary integral equations. Appl Math Comput 121(1):75–92

    MathSciNet  MATH  Google Scholar 

  24. Cuomo S, Galletti A, Giunta G, Marcellino L (2017) Reconstruction of implicit curves and surfaces via RBF interpolation. Appl Numer Math 116:157–171

    Article  MathSciNet  MATH  Google Scholar 

  25. Cuomo S, Galletti A, Giunta G, Starace A (2013) Surface reconstruction from scattered point via RBF interpolation on GPU. In: 2013 federated conference on computer science and information systems, pp 433–440

  26. Dehghan M, Mirzaei D (2008) Numerical solution to the unsteady two-dimensional schrodinger equation using meshless local boundary integral equation method. Int J Numer Methods Eng 76(4):501–520

    Article  MathSciNet  MATH  Google Scholar 

  27. Dehghan M, Salehi R (2012) The numerical solution of the non-linear integro-differential equations based on the meshless method. J Comput Appl Math 236(9):2367–2377

    Article  MathSciNet  MATH  Google Scholar 

  28. Fang W, Wang Y, Xu Y (2004) An implementation of fast wavelet Galerkin methods for integral equations of the second kind. J Sci Comput 20(2):277–302

    Article  MathSciNet  MATH  Google Scholar 

  29. Farengo R, Lee YC, Guzdar PN (1983) An electromagnetic integral equation: application to microtearing modes. Phys Fluids 26(12):3515–3523

    Article  MATH  Google Scholar 

  30. Fasshauer GE (2005) Meshfree methods. In: Rieth M, Schommers W (eds) Handbook of theoretical and computational nanotechnology. American Scientific Publishers, Valencia

  31. Fu Z, Xi Q, Chen W, Cheng AHD (2018) A boundary-type meshless solver for transient heat conduction analysis of slender functionally graded materials with exponential variations. Comput Math Appl 76(4):760–773

    Article  MathSciNet  Google Scholar 

  32. Fu Z, Chen W, Wen P, Zhang C (2018) Singular boundary method for wave propagation analysis in periodic structures. J Sound Vib 425:170–188

    Article  Google Scholar 

  33. Fu Z, Chen W, Ling L (2015) Method of approximate particular solutions for constant- and variable-order fractional diffusion models. Eng Anal Bound Elem 57:37–46

    Article  MathSciNet  MATH  Google Scholar 

  34. Fu Z, Chen W, Yang H (2013) Boundary particle method for Laplace transformed time fractional diffusion equations. J Comput Phys 235:52–66

    Article  MathSciNet  MATH  Google Scholar 

  35. Graham IG (1993) Collocation methods for two dimensional weakly singular integral equations. J Aust Math Soc (Ser B) 22:456–476

    Article  MathSciNet  MATH  Google Scholar 

  36. Guoqiang H, Jiong W (2001) Extrapolation of Nystrom solution for two dimensional nonlinear Fredholm integral equations. J Comput Appl Math 134(1–2):259–268

    Article  MathSciNet  MATH  Google Scholar 

  37. Guoqiang H, Jiong W (2002) Richardson extrapolation of iterated discrete Galerkin solution for two-dimensional Fredholm integral equations. J Comput Appl Math 139:49–63

    Article  MathSciNet  MATH  Google Scholar 

  38. Guoqiang H, Jiong W, Hayami K, Yuesheng X (2000) Correction method and extrapolation method for singular two-point boundary value problems. J Comput Appl Math 126(1–2):145–157

    Article  MathSciNet  MATH  Google Scholar 

  39. Hansen PC, Jensen TK (2007) Large-scale methods in image deblurring, vol 4699. LNCS of lecture notes in computer science

  40. Hanson RL, Phillips JL (1978) Numerical solution of two-dimensional integral equations using linear elements source. SIAM J Numer Anal 15:113–121

    Article  MathSciNet  MATH  Google Scholar 

  41. Kaneko H, Xu Y (1994) Gauss-type quadratures for weakly singular integrals and their application to Fredholm integral equations of the second kind. Math Comput 62(206):739–753

    Article  MathSciNet  MATH  Google Scholar 

  42. Kansa EJ, Holoborodko P (2017) On the ill-conditioned nature of \(C^\infty\) RBF strong collocation. Eng Anal Bound Elem 78:26–30

    Article  MathSciNet  MATH  Google Scholar 

  43. Kress B (1989) Linear integral equations. Springer, Berlin

    Book  MATH  Google Scholar 

  44. Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comput 37(155):141–158

    Article  MathSciNet  MATH  Google Scholar 

  45. Li X (2011) Meshless Galerkin algorithms for boundary integral equations with moving least square approximations. Appl Numer Math 61(12):1237–1256

    Article  MathSciNet  MATH  Google Scholar 

  46. Li X, Wang Q (2016) Analysis of the inherent instability of the interpolating moving least squares method when using improper polynomial bases. Eng Anal Bound Elem 73:21–34

    Article  MathSciNet  MATH  Google Scholar 

  47. Li X, Li S (2016) On the stability of the moving least squares approximation and the element-free Galerkin method. Comput Math Appl 72:1515–1531

    Article  MathSciNet  MATH  Google Scholar 

  48. Li X, Chen H, Wang Y (2015) Error analysis in Sobolev spaces for the improved moving least-square approximation and the improved element-free Galerkin method. Appl Math Comput 262:56–78

    MathSciNet  MATH  Google Scholar 

  49. Manzhirov AV (1985) On a method of solving two-dimensional integral equations of axisymmetric contact problems for bodies with complex rheology. J Appl Math Mech 49(6):777–782

    Article  MathSciNet  MATH  Google Scholar 

  50. Mirkin MV, Bard AJ (1992) Multidimensional integral equations. Part 1. A new approach to solving microelectrode diffusion problems. J Electroanal Chem 323(1–2):1–27

    Article  Google Scholar 

  51. Mirzaei D, Dehghan M (2010) A meshless based method for solution of integral equations. Appl Numer Math 60(3):245–262

    Article  MathSciNet  MATH  Google Scholar 

  52. Parand K, Rad JA (2012) Numerical solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via collocation method based on radial basis functions. Appl Math Comput 218(9):5292–5309

    MathSciNet  MATH  Google Scholar 

  53. Pedas A, Vainikko G (2000) Product integration for weakly singular integral equations in \(m\) dimensional space. In: Bertram B, Constanda C, Struthers A (eds) Integral methods in science and engineering. Chapman and Hall/CRC, London, pp 280–285

    MATH  Google Scholar 

  54. Rad JA, Parand K (2017) Numerical pricing of American options under two stochastic factor models with jumps using a meshless local Petrov–Galerkin method. Appl Numer Math 70:252–274

    MathSciNet  MATH  Google Scholar 

  55. Rad JA, Parand K, Ballestra LV (2015) Pricing European and American options by radial basis point interpolation. Appl Math Comput 251(15):363–377

    MathSciNet  MATH  Google Scholar 

  56. Radlow J (1964) A two-dimensional singular integral equation of diffraction theory. Bull Am Math Soc 70(4):596–599

    Article  MathSciNet  MATH  Google Scholar 

  57. Rajan D, Chaudhuri S (2003) Simultaneous estimation of super-resolved scene and depth map from low resolution defocused observations. IEEE Trans Pattern Anal Mach Intell 25(9):1102–1117

    Article  Google Scholar 

  58. Salehi R, Dehghan M (2013) A moving least square reproducing polynomial meshless method. Appl Numer Math 69:34–58

    Article  MathSciNet  MATH  Google Scholar 

  59. Sladek J, Sladek V, Atluri SN (2000) Local boundary integral equation (LBIE) method for solving problems of elasticity with nonhomogeneous material properties. Comput Mech 24(6):456–462

    Article  MATH  Google Scholar 

  60. Tang Z, Fu Z, Zheng D, Huang J (2018) Singular boundary method to simulate scattering of SH wave by the canyon topography. Adv Appl Math Mech 10(4):1–13

    Article  MathSciNet  Google Scholar 

  61. Tari A, Rahimi MY, Shahmorad S, Talati F (2009) Solving a class of two-dimensional linear and nonlinear Volterra integral equations by the differential transform method. J Comput Appl Math 228(1):70–76

    Article  MathSciNet  MATH  Google Scholar 

  62. Wendland H (2005) Scattered data approximation. Cambridge University Press, New York

    MATH  Google Scholar 

  63. Xie Mukherjee Y, Mukherjee S (1997) The boundary node method for potential problems. Int J Numer Methods Eng 40(5):797–815

    Article  MATH  Google Scholar 

  64. Wazwaz AM (2011) Linear and nonlinear integral equations: methods and applications. Higher Education Press/Springer, Heidelberg

    Book  MATH  Google Scholar 

  65. Zhu T, Zhang JD, Atluri SN (1998) A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach. Comput Mech 21(3):223–235

    Article  MathSciNet  MATH  Google Scholar 

  66. Zuppa C (2001) Error estimates for moving least square approximations. Bull Braz Math Soc New Ser 34:397–416

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is very grateful to the anonymous reviewers for carefully reading the paper and for comments and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pouria Assari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assari, P. On the numerical solution of two-dimensional integral equations using a meshless local discrete Galerkin scheme with error analysis. Engineering with Computers 35, 893–916 (2019). https://doi.org/10.1007/s00366-018-0637-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-018-0637-z

Keywords

Mathematics Subject Classification

Navigation