Skip to main content
Log in

Generation of multi-axis swept mesh in a global way

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Multi-axis sweeping is an important tool to generate hexahedral meshes for solid models which are composed of swept volumes with different sweep directions. However, traditional multi-axis sweeping algorithms either fail to handle complex grafting relationships between swept volumes or are easy to produce hexahedral elements with bad quality around the graft surfaces. To achieve a high-quality multi-axis swept mesh, this paper proposes a global approach to multi-axis swept mesh generation, which can robustly generate hexahedral meshes for solid models composed by swept volumes with different sweep directions. We first generate all surface meshes globally by applying an optimized structured quadrilateral mesh generation algorithm. After that, we generate a swept mesh for each swept volume. Finally, we determine an appropriate way to optimize the topology of the generated mesh so as to improve the mesh quality. The experimental results show the effectiveness and efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Whiteley M, White D, Benzley S, Blacker T (1996) Two and three-quarter dimensional meshing facilitators. Eng Comput 12:144–154

    Article  Google Scholar 

  2. Knupp PM (1998) Next-generation sweep tool: a method for generating all-hex meshes on two-and-one-half dimensional geometries. In: IMR, pp 505–513

  3. Blacker T (1996) The cooper tool. In: 5th International Meshing Roundtable, SAND 95-2130. Sandia National Laboratories, Citeseer

    Google Scholar 

  4. White DR, Saigal S, Owen SJ (2004) Ccsweep: automatic decomposition of multi-sweep volumes. Eng Comput 20(3):222–236

    Article  Google Scholar 

  5. Scott MA, Benzley SE, Owen SJ (2005) Improved many-to-one sweeping. Int J Numer Meth Eng 65(3):332–348

    Article  MATH  Google Scholar 

  6. Lai M, Benzley S, White D (2000) Automated hexahedral mesh generation by generalized multiple source to multiple target sweeping. Int J Numer Methods Eng 49(12):261–275

    Article  MATH  Google Scholar 

  7. Tautges TJ, Blacker T, Mitchell SA (1996) The whisker weaving algorithm: a connectivity-based method for constructing all-hexahedral finite element meshes. Int J Numer Methods Eng 39(19):3327–3349

    Article  MathSciNet  MATH  Google Scholar 

  8. Canann S (1992) Plastering—a new approach to automated, 3-d hexahedral mesh generation. In: 33rd Structures, structural dynamics and materials conference, p. 2416

  9. Staten ML, Kerr RA, Owen SJ, Blacker TD, Stupazzini M, Shimada K (2010) Unconstrained plastering-hexahedral mesh generation via advancing-front geometry decomposition. Int J Numer Methods Eng 81(2):135–171

    MATH  Google Scholar 

  10. Schneiders R, Bünten R (1995) Automatic generation of hexahedral finite element meshes. Comput Aided Geom Des 12:693–707

    Article  MathSciNet  MATH  Google Scholar 

  11. Owen SJ, Saigal S (2000) Hmorph: an indirect approach to advancing front hex meshing. Int J Numer Methods Eng 49(12):289–312

    Article  MATH  Google Scholar 

  12. Müller-Hannemann M (1999) Hexahedral mesh generation by successive dual cycle elimination. Engineering Comput 15:269–279

    Article  MATH  Google Scholar 

  13. Kremer M, Bommes D, Lim I, Kobbelt L (2014) Advanced automatic hexahedral mesh generation from surface quad meshes. In: Proceedings of the 22nd international meshing roundtable, Springer, pp 147–164

  14. Huang J, Jiang T, Wang Y, Tong Y, Bao H (2012) Automatic frame field guided hexahedral mesh generation. In: Tech. report, State Key Lab of CAD&CG, College of Computer Science at Zhejiang University

  15. Wang R, Shen C, Chen J, Wu H, Gao S (2017) Sheet operation based block decomposition of solid models for hex meshing. Comput Aided Des 85:123–137

    Article  Google Scholar 

  16. Sarrate J, Ruiz-Gironés E, Roca X (2014) Unstructured and semi-structured hexahedral mesh generation methods. Comput Technol Rev 10:35–64

    Article  Google Scholar 

  17. White DR, Tautges TJ (1999) Automatic scheme selection for toolkit hex meshing. Int J Numer Methods Eng 49(12):127–144

    MATH  Google Scholar 

  18. Miyoshi K, Blacker T (2000) Hexahedral mesh generation using multi-axis cooper algorithm. In: IMR, pp 89–97

  19. Jankovich SR, Benzley SE, Shepherd JF, Mitchell SA (1999) The graft tool: an all-hexahedral transition algorithm for creating a multidirectional swept volume mesh. In: IMR, pp. 387–392

  20. Earp MN (2005) All hexahedral meshing of multiple source, multiple target, multiple axis geometries via automatic grafting and sweeping. In: M.Sc. Thesis, Brigham Young University

  21. Ruiz-Gironés E, Sarrate J (2010) Generation of structured meshes in multiply connected surfaces using submapping. Adv Eng Softw 41(2):379–387

    Article  MATH  Google Scholar 

  22. Cai S, Tautges TJ (2015) Optimizing corner assignment of submap surfaces. Proc Eng 124:83–95

    Article  Google Scholar 

  23. Wu H, Gao S (2014) Automatic swept volume decomposition based on sweep directions extraction for hexahedral meshing. Proc Eng 82:136–148

    Article  Google Scholar 

  24. Wu H, Gao S, Wang R, Chen J (2018) Fuzzy clustering based pseudo-swept volume decomposition for hexahedral meshing. Comput Aided Des 96:42–58

    Article  Google Scholar 

  25. http://sourceforge.net/projects/lpsolve. Accessed 2017

  26. Blacker TD, Stephenson MB (1991) Paving: a new approach to automated quadrilateral mesh generation. Int J Numer Methods Eng 32:811–847

    Article  MATH  Google Scholar 

  27. Ledoux F, Shepherd J (2009) Topological and geometrical properties of hexahedral meshes. Eng Comput 26(4):419432

    Google Scholar 

  28. Wu H, Gao S, Wang R, Ding M (2017) A global approach to multi-axis swept mesh generation. Proc Eng 203:414–426

    Article  Google Scholar 

  29. Staten ML, Shepherd JF, Ledoux F, Shimada K (2010) Hexahedral mesh matching: converting non-conforming hexahedral-to-hexahedral interfaces into conforming interfaces. Int J Numer Methods Eng 82:1475–1509

    MATH  Google Scholar 

  30. Borden M, Benzley S, Mitchell SA, White DR (2000) The cleave and fill tool: an all-hexahedral refinement algorithm for swept meshes. In: International Meshing Roundtable, pp 69–76

  31. Gargallo-Peiró A, Roca X, Sarrate J (2014) A surface mesh smoothing and untangling method independent of the cad parameterization. Comput Mech 53:587–609

    Article  MathSciNet  MATH  Google Scholar 

  32. Ruiz-Gironés E, Roca X, Sarrate J, Montenegro R, Escobar JM (2015) Simultaneous untangling and smoothing of quadrilateral and hexahedral meshes using an object-oriented framework. Adv Eng Softw 80:12–24

    Article  Google Scholar 

  33. 3D ACIS modeler, spatial corporation, https://www.spatial.com/products/3d-acis-modeling. Accessed 2017

Download references

Acknowledgements

The authors are very grateful to the financial supports from NSF of China (61572432, 61802211) and National 863 High Technology Plan (2013AA041301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuming Gao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Gao, S., Wang, R. et al. Generation of multi-axis swept mesh in a global way. Engineering with Computers 35, 1121–1139 (2019). https://doi.org/10.1007/s00366-018-0654-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-018-0654-y

Keywords

Navigation