Skip to main content
Log in

An efficient operator-splitting FEM-FCT algorithm for 3D chemotaxis models

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

An efficient operator-splitting finite element method (FEM) combined with the flux-corrected transport (FCT) algorithm is presented to reduce the computation and storage of solving three-dimensional (3D) chemotaxis models. Firstly, the 3D coupled and positivity-preserving problem is split into a series of 1D subproblems in three spatial directions. Then each 1D subproblem is solved by the FEM-FCT algorithm which guarantees the positivity of numerical solutions. As the 1D subproblems in one direction are spatially independent, they can be calculated in parallel. Additionally, the accuracy and efficiency of the proposed method are investigated by numerical tests. Furthermore, we employ the proposed method to simulate 3D chemotaxis phenomena, including the typical blow-up effect, the more complex pattern formation and aggregating behavior of cell distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baker MD, Wolanin PM, Stock JB (2006) Signal transduction in bacterial chemotaxis. Bioessays 28(1):9–22

    Article  Google Scholar 

  2. Calvez V, Corrias L, Ebde MA (2012) Blow-up, concentration phenomenon and global existence for the Keller–Segel model in high dimension. Commun Partial Diff Equations 37(4):24–69

    Article  MathSciNet  MATH  Google Scholar 

  3. Childress S, Percus JK (1981) Nonlinear aspects of chemotaxis. Math Biosci 56(3):217–237

    Article  MathSciNet  MATH  Google Scholar 

  4. Douglas J (1955) On the numerical integration of \(\partial ^{2}u/\partial x^{2}+\partial ^{2}u/\partial y^{2}=\partial u/\partial t\) by implicit methods. J Soc Ind Appl Math 3:42–65

    Article  MATH  Google Scholar 

  5. Dormann D, Weijer CJ (2006) Chemotactic cell movement during dictyostelium development and gastrulation. Curr Opin Genet Dev 16(4):367–373

    Article  Google Scholar 

  6. Epshteyn Y (2009) Discontinuous Galerkin methods for the chemotaxis and haptotaxis models. J Comput Appl Math 224(1):168–181

    Article  MathSciNet  MATH  Google Scholar 

  7. Epshteyn Y, Kurganov A (2008) New interior penalty discontinuous Galerkin methods for the Keller–Segel chemotaxis model. SIAM J Numer Anal 47(1):386–408

    Article  MathSciNet  MATH  Google Scholar 

  8. Filbet F (2006) A finite volume scheme for the Patlak–Keller–Segel chemotaxis model. Numer Math 104(4):457–488

    Article  MathSciNet  MATH  Google Scholar 

  9. Ganesan S, Tobiska L (2013) Operator-splitting finite element algorithms for computations of high-dimensional parabolic problems. Appl Math Comput 219(11):6182–6196

    MathSciNet  MATH  Google Scholar 

  10. Hillen T, Painter KJ (2009) A user’s guide to PDE models for chemotaxis. J Math Biol 58(1–2):183–217

    Article  MathSciNet  MATH  Google Scholar 

  11. Kuzmin D (2009) Explicit and implicit FEM-FCT algorithms with flux linearization. J Comput Phys 228(7):2517–2534

    Article  MathSciNet  MATH  Google Scholar 

  12. Kuzmin D, Löhner R, Turek S (1997) Flux-corrected transport. J Comput Phys 135(2):172–186

    Article  Google Scholar 

  13. Keller EF, Segel LA (1971) Model for chemotaxis. J Theor Biol 30(2):225–234

    Article  MATH  Google Scholar 

  14. Kuzmin D, Turek S (2002) Flux correction tools for finite elements. J Comput Phys 175(2):525–558

    Article  MathSciNet  MATH  Google Scholar 

  15. Löhner R, Morgan K, Peraire J, Vahdati M (1987) Finite element flux-corrected transport (FEM-FCT) for the Euler and Navier–Stokes equations. Int J Numer Methods Fluids 7(10):1093–1109

    Article  MATH  Google Scholar 

  16. Möller M, Kuzmin D, Kourounis D (2008) Implicit FEM-FCT algorithms and discrete Newton methods for transient convection problems. Int J Numer Methods Fluids 57(6):761–792

    Article  MathSciNet  MATH  Google Scholar 

  17. Myerscough MR, Maini PK, Painter KJ (1998) Pattern formation in a generalized chemotactic model. Bull Math Biol 60(1):1–26

    Article  MATH  Google Scholar 

  18. Mimura M, Tsujikawa T (1996) Aggregating pattern dynamics in a chemotaxis model including growth. Phys A Stat Mech Appl 230(3):499–543

    Article  Google Scholar 

  19. Nanjundiah V (1973) Chemotaxis, signal relaying and aggregation morphology. J Theor Biol 42(1):63–105

    Article  Google Scholar 

  20. Nie Y, Thomee V (1985) A lumped mass finite-element method with quadrature for a nonlinear parabolic problem. IMA J Numer Anal 5(4):371–396

    Article  MathSciNet  MATH  Google Scholar 

  21. Patlak CS (1953) Random walk with persistence and external bias. Bull Math Biophys 15(3):311–338

    Article  MathSciNet  MATH  Google Scholar 

  22. Saito N (2007) Conservative upwind finite-element method for a simplified Keller–Segel system modelling chemotaxis. IMA J Numer Anal 27(2):332–365

    Article  MathSciNet  MATH  Google Scholar 

  23. Saito N (2012) Error analysis of a conservative finite-element approximation for the Keller–Segel system of chemotaxis. Commun Pure Appl Anal 11(1):339–364

    Article  MathSciNet  MATH  Google Scholar 

  24. Sokolov A, Ali R, Turek S (2015) An AFC-stabilized implicit finite element method for partial differential equations on evolving-in-time surfaces. J Comput Appl Math 289:101–115

    Article  MathSciNet  MATH  Google Scholar 

  25. Saito N, Suzuki T (2005) Notes on finite difference schemes to a parabolic-elliptic system modelling chemotaxis. Appl Math Comput 171(1):72–90

    MathSciNet  MATH  Google Scholar 

  26. Strehl R, Sokolov A, Kuzmin D, Horstmann D, Turek S (2013) A positivity-preserving finite element method for chemotaxis problems in 3D. J Comput Appl Math 239(239):290–303

    Article  MathSciNet  MATH  Google Scholar 

  27. Strehl R, Sokolov A, Kuzmin D, Turek S (2010) A flux-corrected finite element method for chemotaxis problems. Comput Methods Appl Math 10(2):219–232

    Article  MathSciNet  MATH  Google Scholar 

  28. Sokolov A, Strehl R, Turek S (2013) Numerical simulation of chemotaxis models on stationary surfaces. Discr Continuous Dyn Syst Series B 18(10):2689–2704

    MathSciNet  MATH  Google Scholar 

  29. Thomée V (1984) Galerkin finite element methods for parabolic problems. Springer-Verlag, Berlin

    MATH  Google Scholar 

  30. Tyson R, Stern LG, Leveque RJ (2000) Fractional step methods applied to a chemotaxis model. J Math Biol 41(5):455–475

    Article  MathSciNet  MATH  Google Scholar 

  31. Tao Y, Wang M (2009) A combined chemotaxis-haptotaxis system: the role of logistic source. SIAM J Math Anal 41(4):1533–1558

    Article  MathSciNet  MATH  Google Scholar 

  32. Wu D (2005) Signaling mechanisms for regulation of chemotaxis. Cell Res 15(1):52–56

    Article  Google Scholar 

  33. Xiao X, Feng X, Yuan J (2018) The lumped mass finite element method for surface parabolic problems: error estimates and maximum principle. Comput Math Appl 76(3):488–507

    Article  MathSciNet  MATH  Google Scholar 

  34. Xiao X, Gui D, Feng X (2017) A highly efficient operator-splitting finite element method for 2D/3D nonlinear Allen–Cahn equation. Int J Numer Method Heat Fluid Flow 27(2):530–542

    Article  Google Scholar 

  35. Xiao X, He Y, Feng X (2019) Numerical simulations for the chemotaxis models on surfaces via a novel characteristic finite element method. Comput Math Appl 78(1):20–34

    Article  MathSciNet  MATH  Google Scholar 

  36. Zalesak ST (1979) Fully multidimensional flux-corrected transport algorithms for fluids. J Comput Phys 31(3):335–362

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhai S, Weng Z, Feng X (2016) Fast explicit operator splitting method and time-step adaptivity for fractional non-local AllenCCahn model. Appl Math Model 40(2):1315–1324

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhai S, Weng Z, Gui D, Feng X (2015) High-order compact operator splitting method for three-dimensional fractional equation with subdiffusion. Int J Heat Mass Transf 84:440–447

    Article  Google Scholar 

  39. Zhang R, Zhu J, Loula AFD, Yu X (2016) Operator splitting combined with positivity-preserving discontinuous Galerkin method for the chemotaxis model. J Comput Appl Math 302:312–326

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are truly grateful to the editor and referees for their valuable comments and suggestions which helped us to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinlong Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is in parts supported by the NSF of Xinjiang Province (No. 2019D01C047), the Research Fund from Key Laboratory of Xinjiang Province (No. 2017D04030), the Xinjiang Provincial University Research Foundation of China (No. XJEDU2018I002), and the NSF of China (No. 11671345, No. 11362021). 

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Xiao, X., Zhao, J. et al. An efficient operator-splitting FEM-FCT algorithm for 3D chemotaxis models. Engineering with Computers 36, 1393–1404 (2020). https://doi.org/10.1007/s00366-019-00771-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00771-8

Keywords

Mathematics Subject Classification

Navigation