Skip to main content
Log in

Geometrically nonlinear Hessian eigenmode decomposition for local stability analysis of thin-walled structures

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

A nonlinear geometric formulation based on position and unconstrained vector is originally proposed to evaluate the local stability of thin-walled members. The Hessian is decomposed into linear and geometric equivalent installments. As the Hessian matrix exhibits a definite positive quadratic form, stability condition for large displacements requires that the Hessian matrix positivity be verified at each load small steps. This condition must be established by evaluating the smallest eigenvalue signal at the critical point imminence. The positional finite element method is formulated from a total Lagrangian reference. The mechanical system equilibrium is guaranteed by the total potential energy stationary principle. The constitutive law of Saint–Venant–Kirchhoff is obtained from the linear relationship between the second Piola–Kirchhoff stress tensor and Green–Lagrange deformation tensor. Some examples demonstrate the applicability of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Elishakoff I (2005) Essay on the contributors to the elastic stability theory. Meccanica 40(1):75–110

    Article  MathSciNet  Google Scholar 

  2. Oldfather W, Ellis C, Brown D (1933) Leonhard Euler's elastic curves. Isis 20(1):72–160. Retrieved from http://www.jstor.org/stable/224885

    Article  Google Scholar 

  3. Koiter WT (1967) On the stability of elastic equilibrium. National Aeronautics and Space Administration, Washington

    Google Scholar 

  4. Bažant ZP (2000) Elastic, anelastic, and disintegrating structures: a conspectus of main results. ZAMM Z Angew Math Mech 80(11–12):709–732

    Article  MathSciNet  Google Scholar 

  5. Davis JM (2000) Recent research advances in cold-formed steel structures. J Constr Steel Res 55(1–3):267–288

    Article  Google Scholar 

  6. Hancock GJ (2003) Cold-formed steel structures. J Constr Steel Res 59(4):473–487

    Article  Google Scholar 

  7. Dubina D, Ungureanu V, Rondal J (2005) Numerical modelling and codification of imperfection for cold-formed steel member analysis. Steel Compos Struct 5(6):515–533

    Article  Google Scholar 

  8. Camotim D, Basaglia C, Silvestre N (2010) GBT buckling analysis of thin-walled steel frames: a state-of-the-artreport. Thin Walled Struct 48(10–11):726–743

    Article  Google Scholar 

  9. Schafer BW (2011) Cold-formed steel structures around the world. A review of recent advances in applications, analysis and design. Steel Constr Des Res 4(3):141–149

    Article  Google Scholar 

  10. Sadovský Z, Kriváček J, Ivančo V, Ďuricová A (2012) Computational modelling of geometric imperfections and buckling strength of cold-formed steel. J Constr Steel Res 78:1–7

    Article  Google Scholar 

  11. Erkmen RE, Mohareb M (2008) Buckling analysis of thin-walled open members—a finite element formulation. Thin Walled Struct 46(6):618–636

    Article  Google Scholar 

  12. Michell AGM (1899) Elastic stability of long beams under transverse forces. Philos Mag Ser 48(292):298–309

    Article  Google Scholar 

  13. Prandtl L (1899) Kipperscheinungen, Universität München: Doctoral dissertation

  14. Reissner H (1904) Über die Stabilitä t der Biegung. Sitzungsber Berl Math Ges Beil Arch Math Phys III:53–56

    Google Scholar 

  15. Wagner H (1936) Torsion and buckling of open sections. In: Translated technical memorandum, NACA—National Advisory Committee for Aeronautics, vol 807

  16. Timoshenko SP, Gere JM (1961) Theory of elastic stability, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  17. Vlasov VZ (1961) Thin-walled elastic beam, English translation ed. Published for NSF and Department of Commerce by the Israel Program of Scientific Translations, Jerusalem

  18. Ádány S, Schafer BW (2006) Buckling mode decomposition of single-branched open cross-section members via finite strip method: application and examples. Thin Walled Struct 44(5):585–600

    Article  Google Scholar 

  19. Ádány S (2012) Global buckling of thin-walled simply supported columns: analytical solutions based on shell model. Thin Walled Struct 55:64–75

    Article  Google Scholar 

  20. Coda HB, Paccola RR (2007) An alternative positional FEM formulation for geometrically non-linear analysis of shells: curved triangular isoparametric elements. Comput Mech 40(1):185–200

    Article  Google Scholar 

  21. Coda HB, Paccola RR (2008) A positional FEM formulation for geometrical non-linear analysis of shells. Latin Am J Solids Struct 5:205–223

    Google Scholar 

  22. Coda HB, Paccola RR (2009) Unconstrained finite element for geometrical nonlinear dynamics of shells. Math Probl Eng 2009:32

    Article  MathSciNet  Google Scholar 

  23. Ciarlet P (1994) Mathematical elasticity: three-dimensional elasticity, vol 1. Elsevier, Amsterdam

    MATH  Google Scholar 

  24. Garcea G (2001) Mixed formulation in Koiter analysis of thin-walled beams. Comput Methods Appl Mech Eng 190:3369–3399. https://doi.org/10.1016/s0045-7825(00)00268-1

    Article  MATH  Google Scholar 

  25. Reis A, Camotim D (2001) Estabilidade estrutural. McGRAW-HILL, Lisboa

    Google Scholar 

  26. Garcea G, Madeo A, Casciaro R (2012) The implicit corotational method and its use in the derivation of nonlinear structural models for beams and plates. J Mech Mater Struct 7:509–538

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Federal University for Latin American Integration (UNILA) for the work environment and shared resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aref K. L. Kzam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kzam, A.K.L., Coda, H.B. Geometrically nonlinear Hessian eigenmode decomposition for local stability analysis of thin-walled structures. Engineering with Computers 36, 1627–1641 (2020). https://doi.org/10.1007/s00366-019-00785-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00785-2

Keywords

Navigation