Skip to main content
Log in

Multi-objective design optimization of steel moment frames considering seismic collapse safety

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This study focuses on multi-objective performance-based seismic optimization of steel moment frames by an efficient algorithm. In the present study, an efficient framework is developed to find a Pareto front for multi-objective optimization problem of steel moment frames involving global damage index and initial cost as two conflicting objective functions. To this end, a new multi-objective algorithm is introduced and its efficiency is demonstrated trough a set of benchmark multi-objective truss design examples. Subsequently, a 6- and a 12-story steel moment frame are designed by the proposed algorithm. To evaluate the seismic performance and collapse capacity of the optimal designs, damage indices and incremental dynamic analysis are used and their seismic damage costs and adjusted collapse margin ratios are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013) Metaheuristic applications in structures and infrastructures. Elsevier, London

    Google Scholar 

  2. Gholizadeh S (2015) Performance-based optimum seismic design of steel structures by a modified firefly algorithm and a new neural network. Adv Eng Softw 81:50–65. https://doi.org/10.1016/j.advengsoft.2014.11.003

    Article  Google Scholar 

  3. Kaveh A, Nasrollahi A (2014) Performance-based seismic design of steel frames utilizing charged system search optimization. Appl Soft Comput 22:213–221. https://doi.org/10.1016/j.asoc.2014.05.012

    Article  Google Scholar 

  4. Kaveh A, Farahmand Azar B, Hadidi A, Rezazadeh Sorochi F, Talatahari S (2014) Performance-based seismic design of steel frames using ant colony optimization. J Constr Steel Res 66:566–574. https://doi.org/10.1016/j.jcsr.2009.11.006

    Article  Google Scholar 

  5. Fragiadakis M, Lagaros ND, Papadrakakis M (2006) Performance-based multiobjective optimum design of steel structures considering life-cycle cost. Struct Multidisc Optim 32:1–11. https://doi.org/10.1007/s00158-006-0009-y

    Article  Google Scholar 

  6. Kaveh A, Kalateh-Ahani M, Fahimi-Farzam M (2014) Damage-based optimization of large-scale steel structures. Earthq Struct 7:1119–1139. https://doi.org/10.12989/eas.2014.7.6.1119

    Article  Google Scholar 

  7. Vamvatsikos D, Cornell CA (2002) Incremental dynamic analysis. Earthq Eng Struct Dyn 31(3):491–514. https://doi.org/10.1002/eqe.141

    Article  Google Scholar 

  8. Ibarra LF, Krawinkler H (2005) Global collapse of frame structures under seismic excitations. Berkeley: Report No. PEER 2005/06, Pacific Earthquake Engineering Research Center

  9. Haselton CB, Baker JW, Liel AB, Deierlein GG (2011) Accounting for ground motion spectral shape characteristics in structural collapse assessment through an adjustment for epsilon. J Struct Eng 137(3):332–344. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000103

    Article  Google Scholar 

  10. Haselton CB, Liel AB, Deierlein GG, Dean BS, Chou JH (2011) Seismic collapse safety of reinforced concrete buildings: I. Assessment of ductile moment frames. J Struct Eng 137(4):481–491. https://doi.org/10.1061/(asce)st.1943-541x.0000318

    Article  Google Scholar 

  11. FEMA-P695 (2009) Quantification of building seismic performance factors. Federal Emergency Management Agency, Washington

    Google Scholar 

  12. Asgarian B, Sadrinezhad A, Alanjari P (2010) Seismic performance evaluation of steel moment resisting frames through incremental dynamic analysis. J Constr Steel Res 66:178–190. https://doi.org/10.1016/j.jcsr.2009.09.001

    Article  Google Scholar 

  13. Fattahi F, Gholizadeh S (2019) Seismic fragility assessment of optimally designed steel moment frames. Eng Struct 179:37–51. https://doi.org/10.1016/j.engstruct.2018.10.075

    Article  Google Scholar 

  14. HAZUS-MH MR1 (2003) Multi-hazard loss estimation methodology earthquake model. FEMA-National Institute of Building Sciences, Washington

  15. Kang YJ, Wen YK (2000) Minimum life-cycle cost structural design against natural hazards Tech. Rep. SRS 629. University of Illinois at Urbana-Champaign

  16. Park YJ, Ang AH-S (1985) Mechanistic seismic damage model for reinforced concrete. ASCE J Struct Eng 111:722–739. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(722)

    Article  Google Scholar 

  17. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8:256–279. https://doi.org/10.1109/TEVC.2004.826067

    Article  Google Scholar 

  18. Knowles JD, Corne DW (2000) Approximating the nondominated front using the Pareto archived evolution strategy. Evol Comput 8:149–172. https://doi.org/10.1162/106365600568167

    Article  Google Scholar 

  19. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197. https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  20. Tejani GG, Kumar S, Gandomi AH (2018) Multi-objective heat transfer search algorithm for truss optimization. Eng Comput. https://doi.org/10.1007/s00366-019-00846-6

    Article  Google Scholar 

  21. Saadat S, Camp CV, Pezeshk S (2014) Seismic performance-based design optimization considering direct economic loss and direct social loss. Eng Struct 76:193–201. https://doi.org/10.1016/j.engstruct.2014.07.008

    Article  Google Scholar 

  22. Choi SW, Park HS (2012) Multi-objective seismic design method for ensuring beam hinging mechanism in steel frames. J Constr Steel Res 74:17–25. https://doi.org/10.1016/j.jcsr.2012.01.012

    Article  Google Scholar 

  23. Mokarram V, Banan MR (2018) An improved multi-objective optimization approach for performance-based design of structures using nonlinear time-history analyses. Appl Soft Comput 73:647–665. https://doi.org/10.1016/j.asoc.2018.08.048

    Article  Google Scholar 

  24. Xu J, Spencer BF, Lu X (2017) Performance-based optimization of nonlinear structures subject to stochastic dynamic loading. Eng Struct 134:334–345. https://doi.org/10.1016/j.engstruct.2016.12.051

    Article  Google Scholar 

  25. Gholizadeh S, Baghchevan A (2017) Multi-objective seismic design optimization of steel frames by a chaotic meta-heuristic algorithm. Eng Comput 33:1045–1060. https://doi.org/10.1007/s00366-017-0515-0

    Article  Google Scholar 

  26. Kaveh A, Laknejadi K, Alinejad B (2012) Performance-based multi-objective optimization of large steel structures. Acta Mech 223:355–369. https://doi.org/10.1007/s00707-011-0564-1

    Article  MATH  Google Scholar 

  27. Kaveh A, Kalateh-Ahani M, Fahimi-Farzam M (2014) Life-cycle cost optimization of steel moment-frame structures: performance-based seismic design approach. Earthq Struct 7:271–294. https://doi.org/10.12989/eas.2014.7.3.271

    Article  Google Scholar 

  28. Kaveh A, Fahimi-Farzam M, Kalateh-Ahani M (2015) Performance-based multi-objective optimal design of steel frame structures: nonlinear dynamic procedure. Sci Iran A 22:373–387

    Google Scholar 

  29. Kaveh A, Fahimi-Farzam M, Kalateh-Ahani M (2015) Optimum design of steel frame structures considering construction cost and seismic damage. Smart Struct Syst 16:1–26. https://doi.org/10.12989/sss.2015.16.1.001

    Article  Google Scholar 

  30. FEMA-350 (2000) Recommended seismic design criteria for new steel moment-frame buildings. Federal Emergency Management Agency, Washington

    Google Scholar 

  31. Park YJ, Ang AH, Wen YK (1987) Damage-limiting aseismic design of buildings. Earthq Spectra 3:1–26. https://doi.org/10.1193/1.1585416

    Article  Google Scholar 

  32. Kunnath SK, Reinhorn AM, Lobo RF (1992) IDARC version 3.0: a program for the inelastic damage analysis of reinforced concrete structures. Technical report NCEER-92-0022. National Center for Earthquake Engineering Research, Buffalo, NY

  33. Ghosh S, Datta D, Katakdhond AA (2011) Estimation of the Park-Ang damage index for planar multi-storey frames using equivalent single-degree systems. Eng Struct 33:2509–2524. https://doi.org/10.1016/j.engstruct.2011.04.023

    Article  Google Scholar 

  34. Mekki M, Elachachi SM, Breysse D, Zoutat M (2016) Seismic behavior of R.C. structures including soil-structure interaction and soil variability effects. Eng Struct 126:15–26. https://doi.org/10.1016/j.engstruct.2016.07.034

    Article  Google Scholar 

  35. AISC 360-16 (2016) Specification for structural steel buildings. American Institute of Steel Construction, Chicago

    Google Scholar 

  36. Gholizadeh S, Fattahi F (2012) Design optimization of tall steel buildings by a modified particle swarm algorithm. Struct Design Tall Spec Build 23:285–301. https://doi.org/10.1002/tal.1042

    Article  Google Scholar 

  37. AISC 341-16 (2016) Seismic provisions for structural steel buildings. American Institute of Steel Construction, Chicago

    Google Scholar 

  38. OpenSees version 2.4.0 [Computer software]. PEER, Berkeley, CA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Gholizadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholizadeh, S., Fattahi, F. Multi-objective design optimization of steel moment frames considering seismic collapse safety. Engineering with Computers 37, 1315–1328 (2021). https://doi.org/10.1007/s00366-019-00886-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00886-y

Keywords

Navigation