Skip to main content
Log in

Legendre multiwavelet functions for numerical solution of multi-term time-space convection–diffusion equations of fractional order

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this study, the Ritz–Galerkin method based on Legendre multiwavelet functions is introduced to solve multi-term time-space convection–diffusion equations of fractional order with variable coefficients and initial-boundary conditions. This method reduces the problem to a set of algebraic equations. The coefficients of approximate solutions are obtained from the coefficients of this system. A convergence analysis for function approximations is also presented together with an upper bound for the error of estimates. Numerical examples are included to demonstrate the validity and applicability of the technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abdulaziz O, Hashim I, Momani S (2008) Solving systems of fractional differential equations by homotopy-perturbation method. Phys Lett A 372:451–459

    MathSciNet  MATH  Google Scholar 

  2. Agarwal PP, Andrade B, Cuevas C (2010) Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations. Nonlinear Anal Real World Appl 11:3532–3554

    MathSciNet  MATH  Google Scholar 

  3. Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier Science Limited, Amsterdam

    MATH  Google Scholar 

  4. Chui CK (1997) Wavelets: a mathematical tool for signal analysis. SIAM, Philadelphia

    MATH  Google Scholar 

  5. Daftardar-Gejji V, Jafari H (2007) Solving a multi-order fractional differential equation using adomian decomposition. Appl Math Comput 189:541–548

    MathSciNet  MATH  Google Scholar 

  6. Das S (2009) Analytical solution of a fractional diffusion equation by variational iteration method. Comput Math Appl 57:483–487

    MathSciNet  MATH  Google Scholar 

  7. Diethelm K (2010) The analysis of fractional differential equations. Springer, Berlin

    MATH  Google Scholar 

  8. Du L, Wu XH, Chen S (2011) A novel mathematical modeling of multiple scales for a class of two dimensional singular perturbed problems. Appl Math Model 35:4589–4602

    MathSciNet  MATH  Google Scholar 

  9. Ghasemi M, Kajani MT (2010) Applications of He’s homotopy perturbation method to solve a diffusion convection problem. Math Sci 4:171–186

    MATH  Google Scholar 

  10. Guvanasen V, Volker RE (1983) Numerical solutions for solute transport in unconfined aquifers. Int J Numer Methods Fluids 3:103–123

    MATH  Google Scholar 

  11. Hilfer R (2000) Applications of fractional calculus in physics. World Scientific Publishing Company, Singapore

    MATH  Google Scholar 

  12. Isenberg J, Gutfinger C (1973) Heat transfer to a draining film. Int J Heat Mass Transf 16:505–512

    MATH  Google Scholar 

  13. Jafari H, Yousefi SA, Firoozjaee MA, Momani S, Khalique CM (2011) Application of Legendre wavelets for solving fractional differential equations. Comput Math Appl 62:1038–1045

    MathSciNet  MATH  Google Scholar 

  14. Jiang H, Liu F, Turner I, Burrage K (2012) Analytical solutions for the multi-term time-space Caputo-Rieszfractional advection–diffusion equations on a finite domain. J Math Anal Appl 389:1117–1127

    MathSciNet  MATH  Google Scholar 

  15. Kadalbajoo MK, Awasthi A (2006) A parameter uniform difference scheme for singularly perturbed parabolic problem in one space dimension. Appl Math Comput 183:42–60

    MathSciNet  MATH  Google Scholar 

  16. Kadalbajoo MK, Gupta V, Awasthi A (2008) A uniformly convergent B-spline collocation method on a nonuniform mesh for singularly perturbed one dimensional time-dependent linear convectiondiffusion problem. J Comput Appl Math 220:271–289

    MathSciNet  MATH  Google Scholar 

  17. Kadalbajoo MK, Gupta V (2009) Numerical solution of singularly perturbed convectiondiffusion problem using parameter uniform B-spline collocation method. J Math Anal Appl 355:439–452

    MathSciNet  MATH  Google Scholar 

  18. Khader MM (2011) On the numerical solutions for the fractional diffusion equation. Commun Nonlinear Sci Numer Simul 16:2535–2542

    MathSciNet  MATH  Google Scholar 

  19. Khader MM, Sweilam NH, Mahdy AMS (2011) An efficient numerical method for solving the fractional diffusion equation. J Appl Math Bioinform 1:1–12

    MATH  Google Scholar 

  20. Kumar N (1983) Unsteady flow against dispersion in finite porous media. J Hydrol 63:345–358

    Google Scholar 

  21. Lenferink W (2002) A second order scheme for a time-dependent, singularly perturbed convectiondiffusion equation. J Comput Appl Math 143:49–68

    MathSciNet  MATH  Google Scholar 

  22. Li G, Sun C, Jia X, Du D (2016) Numerical solution to the multi-term time fractional diffusion equation in a finite domain. Numer Math Theor Methods Appl 9:337–357

    MathSciNet  MATH  Google Scholar 

  23. Liu Y, Zhao X (2010) He’s variational iteration method for solving convection diffusion equations. Adv Intell Comput Theor Appl 6:246–251

    Google Scholar 

  24. Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York

    MATH  Google Scholar 

  25. Ming Q, Hwang C, Shih YP (1996) The computation of wavelet-Galerkin approximation on a bounded interval. Int J Numer Methods Eng 39:2921–2944

    MathSciNet  MATH  Google Scholar 

  26. Momani S (2007) An algorithm for solving the fractional convection diffusion equation with nonlinear source term. Commun Nonlinear Sci Numer Simul 12:1283–1290

    MathSciNet  MATH  Google Scholar 

  27. Podlubny I (1999) Fractional differential equations. Academic Press, New York

    MATH  Google Scholar 

  28. Razzaghi M, Yousefi SA (2000) Legendre wavelets direct method for variational problems. Math Comput Simul 53:185–192

    MathSciNet  Google Scholar 

  29. Razzaghi M, Yousefi SA (2001) Legendre wavelets method for the solution of nonlinear problems in the calculus of variations. Math Comput Model 34:45–54

    MathSciNet  MATH  Google Scholar 

  30. Saeedi H (2018) A fractional-order operational method for numerical treatment of multi-order fractional partial differential equation with variable coefficients. SeMA J 75:421–43

    MathSciNet  MATH  Google Scholar 

  31. Saha Ray S, Bera RK (2006) Analytical solution of a fractional diffusion equation by Adomian decomposition method. Appl Math Comput 174:329–336

    MathSciNet  MATH  Google Scholar 

  32. Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives: theory and applications. Gordon and Breach Science Publishers, Yverdon

    MATH  Google Scholar 

  33. Wu G, Lee EWM (2010) Fractional variational iteration method and its application. Phys Lett A 374:2506–2509

    MathSciNet  MATH  Google Scholar 

  34. Yousefi SA (2010) Legendre multiwavelet Galerkin method for solving the hyperbolic telegraph equation. Numer Methods Partial Differ Equ 26:535–543

    MathSciNet  MATH  Google Scholar 

  35. Yousefi SA (2007) Legendre scaling function for solving generalized Emden–Fowler equations. Int J Inf Syst Sci 3:243–250

    MathSciNet  MATH  Google Scholar 

  36. Yousefi SA (2006) Legendre wavelets method for solving differential equations of Lane–Emden type. Appl Math Comput 181:1417–1422

    MathSciNet  MATH  Google Scholar 

  37. Yousefi SA (2006) Numerical solution of Abel’s integral equation by using Legendre wavelets. Appl Math Comput 175:574–580

    MathSciNet  MATH  Google Scholar 

  38. Yousefi SA, Razzaghi M (2005) Legendre wavelets method for the nonlinear VolterraFredholm integral equations. Math Comput Simul 70:1–8

    MATH  Google Scholar 

  39. Yuste SB (2006) Weighted average finite difference methods for fractional diffusion equations. J Comput Phys 216:264–274

    MathSciNet  MATH  Google Scholar 

  40. Yüzbaşı Ş, Şahin N (2013) Numerical solutions of singularly perturbed one-dimensional parabolic convection–diffusion problems by the Bessel collocation method. Appl Math Comput 220:305–315

    MathSciNet  MATH  Google Scholar 

  41. Zhong G, Yi M, Huang J (2018) Numerical method for solving fractional convection diffusion equations with time-space variable coefficients. IAENG Int J Appl Math 48:62–66

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the referees for carefully reading the paper and for their many constructive comments and suggestions to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Yousefi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The \({\hat{m}}^2\times 1\) matrix \({\mathbf {Q}}\) with unknown coefficients \(c_{nl}^{ij}\) is as follows:

$$\begin{aligned} {\mathbf {Q}}=\left[ \begin{array}{ccccc} \mathbf {C_1}^T\\ \mathbf {C_2}^T\\ \vdots \\ {\mathbf{C}_{{\hat{\mathbf{m}}}}}^T \\ \end{array} \right] _{{{\hat{m}}}^2 \times 1}, \end{aligned}$$

where

$$\begin{aligned}&\left[ \begin{array}{ccccc} {\mathbf {C}}_1\\ \mathbf {C_2}\\ \vdots \\ {\mathbf {C_{M}}} \\ {\mathbf {C_{M+1}}} \\ \vdots \\ {\mathbf {C_{2M}}} \\ \vdots \\ {\mathbf {C_{(2^p-1)M}}} \\ \vdots \\ {\mathbf {C_{2^pM}}} \\ \end{array} \right] _{{{\hat{m}}} \times {\hat{m}}}=\\&{\left[ \begin{array}{cccccccccccc} c_{00}^{00}&{}c_{00}^{01}&{}\cdots &{} c_{00}^{0(M-1)}&{} c_{00}^{10}&{}\cdots &{} c_{00}^{1(M-1)}&{}\cdots &{} c_{00}^{(2^p-1)0}&{}\cdots &{} c_{00}^{(2^p-1)(M-1)}\\ c_{01}^{00}&{}c_{01}^{01}&{}\cdots &{} c_{01}^{0(M-1)}&{} c_{01}^{10}&{}\cdots &{} c_{01}^{1(M-1)}&{}\cdots &{} c_{01}^{(2^p-1)0}&{}\cdots &{} c_{01}^{(2^p-1)(M-1)}\\ \vdots &{}\vdots &{}\cdots &{}\vdots &{}\vdots &{}\cdots &{}\vdots &{}\cdots &{}\vdots &{}\cdots &{}\vdots \\ c_{0(M-1)}^{00}&{}c_{0(M-1)}^{01}&{}\cdots &{} c_{0(M-1)}^{0(M-1)}&{} c_{0(M-1)}^{10}&{}\cdots &{} c_{0(M-1)}^{1(M-1)}&{}\cdots &{} c_{0(M-1)}^{(2^p-1)0}&{}\cdots &{} c_{0(M-1)}^{(2^p-1)(M-1)}\\ c_{10}^{00}&{}c_{10}^{01}&{}\cdots &{} c_{10}^{0(M-1)}&{} c_{10}^{10}&{}\cdots &{} c_{10}^{1(M-1)}&{}\cdots &{} c_{10}^{(2^p-1)0}&{}\cdots &{} c_{10}^{(2^p-1)(M-1)}\\ \vdots &{}\vdots &{}\cdots &{}\vdots &{}\vdots &{}\cdots &{}\vdots &{}\cdots &{}\vdots &{}\cdots &{}\vdots \\ c_{1(M-1)}^{00}&{}c_{1(M-1)}^{01}&{}\cdots &{} c_{1(M-1)}^{0(M-1)}&{} c_{1(M-1)}^{10}&{}\cdots &{} c_{1(M-1)}^{1(M-1)}&{}\cdots &{} c_{1(M-1)}^{(2^p-1)0}&{}\cdots &{} c_{1(M-1)}^{(2^p-1)(M-1)}\\ \vdots &{}\vdots &{}\cdots &{}\vdots &{}\vdots &{}\cdots &{}\vdots &{}\cdots &{}\vdots &{}\cdots &{}\vdots \\ c_{(2^p-1)0}^{00}&{}c_{(2^p-1)0}^{01}&{}\cdots &{} c_{(2^p-1)0}^{0(M-1)}&{} c_{(2^p-1)0}^{10}&{}\cdots &{} c_{(2^p-1)0}^{1(M-1)}&{}\cdots &{} c_{(2^p-1)0}^{(2^p-1)0}&{}\cdots &{} c_{(2^p-1)0}^{(2^p-1)(M-1)}\\ \vdots &{}\vdots &{}\cdots &{}\vdots &{}\vdots &{}\cdots &{}\vdots &{}\cdots &{}\vdots &{}\cdots &{}\vdots \\ c_{(2^p-1)(M-1)}^{00}&{}c_{(2^p-1)(M-1)}^{01}&{}\cdots &{} c_{(2^p-1)(M-1)}^{0(M-1)}&{} c_{(2^p-1)(M-1)}^{10}&{}\cdots &{} c_{(2^p-1)(M-1)}^{1(M-1)}&{}\cdots &{} c_{(2^p-1)(M-1)}^{(2^p-1)0}&{}\cdots &{} c_{(2^p-1)(M-1)}^{(2^p-1)(M-1)}\\ \end{array} \right] .} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokhanvar, E., Askari-Hemmat, A. & Yousefi, S.A. Legendre multiwavelet functions for numerical solution of multi-term time-space convection–diffusion equations of fractional order. Engineering with Computers 37, 1473–1484 (2021). https://doi.org/10.1007/s00366-019-00896-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00896-w

Keywords

Navigation