Skip to main content
Log in

Postbuckling analysis of hydrostatic pressurized FGM microsized shells including strain gradient and stress-driven nonlocal effects

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Herein, with the aid of the newly proposed theory of nonlocal strain gradient elasticity, the size-dependent nonlinear buckling and postbuckling behavior of microsized shells made of functionally graded material (FGM) and subjected to hydrostatic pressure is examined. As a consequence, the both nonlocality and strain gradient micro-size dependency are incorporated to an exponential shear deformation shell theory to construct a more comprehensive size-dependent shell model with a refined distribution of shear deformation. The Mori–Tanaka homogenization scheme is utilized to estimate the effective material properties of FGM nanoshells. After deduction of the non-classical governing differential equations via boundary layer theory of shell buckling, a perturbation-based solving process is employed to extract explicit expressions for nonlocal strain gradient stability paths of hydrostatic pressurized FGM microsized shells. It is observed that the nonlocality size effect causes to decrease the critical hydrostatic pressure and associated end-shortening of microsized shells, while the strain gradient size dependency leads to increase them. In addition, it is found that the influence of the internal strain gradient length scale parameter on the nonlinear instability characteristics of hydrostatic pressurized FGM microsized shells is a bit more than that of the nonlocal one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Anwar M, Ahmad I, Warsi MH, Mohapatra S, Ahmad N et al (2015) Experimental investigation and oral bioavailability enhancement of nano-sized curcumin by using supercritical anti-solvent process. Eur J Pharm Biopharm 96:162–172

    Google Scholar 

  2. Blivi AS, Benhui F, Bai J, Kondo D, Bedoui F (2016) Experimental evidence of size effect in nano-reinforced polymers: case of silica reinforced PMMA. Polym Test 56:337–343

    Google Scholar 

  3. Afrand M (2017) Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Appl Therm Eng 110:1111–1119

    Google Scholar 

  4. Duc ND, Cong PH, Anh VM, Quang VD, Phuong T, Tuan ND, Thinh NH (2015) Mechanical and thermal stability of eccentrically stiffened functionally graded conical shell panels resting on elastic foundations and in thermal environment. Compos Struct 132:597–609

    Google Scholar 

  5. Duc ND, Jaechong L, Nguyen-Thoi T, Thang PT (2017) Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler-Pasternak elastic foundations. Aerosp Sci Technol 68:391–402

    Google Scholar 

  6. Qin Z, Chu F, Zu J (2017) Free vibrations of cylindrical shells with arbitrary boundary conditions: a comparison study. Int J Mech Sci 133:91–99

    Google Scholar 

  7. Qin Z, Yang Z, Zu J, Chu F (2018) Free vibration analysis of rotating cylindrical shells coupled with moderately thick annular plates. Int J Mech Sci 142:127–139

    Google Scholar 

  8. Qin Z, Pang X, Safaei B, Chu F (2019) Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions. Compos Struct 220:847–860

    Google Scholar 

  9. Phuc PM, Duc ND (2019) The effect of cracks on the stability of the functionally graded plates with variable-thickness using HSDT and phase-field theory. Compos B Eng 175:107086

    Google Scholar 

  10. Khoa ND, Thiem HT, Duc ND (2019) Nonlinear buckling and postbuckling of imperfect piezoelectric S-FGM circular cylindrical shells with metal-ceramic-metal layers in thermal environment using Reddy’s third-order shear deformation shell theory. Mech Adv Mater Struct 26:248–259

    Google Scholar 

  11. Sahmani S, Ansari R (2011) Nonlocal beam models for buckling of nanobeams using state-space method regarding different boundary conditions. J Mech Sci Technol 25:2365

    Google Scholar 

  12. Akgoz B, Civalek O (2014) A new trigonometric beam model for buckling of strain gradient microbeams. Int J Mech Sci 81:88–94

    Google Scholar 

  13. Sahmani S, Bahrami M, Aghdam MM, Ansari R (2014) Surface effects on the nonlinear forced vibration response of third-order shear deformable nanobeams. Compos Struct 118:149–158

    Google Scholar 

  14. Sahmani S, Bahrami M, Ansari R (2014) Surface energy effects on the free vibration characteristics of postbuckled third-order shear deformable nanobeams. Compos Struct 116:552–561

    Google Scholar 

  15. Zhang Z, Wang CM, Challamel N (2014) Eringen’s length scale coefficient for buckling of nonlocal rectangular plates from microstructured beam-grid model. Int J Solids Struct 51:4307–4315

    Google Scholar 

  16. Jamalpoor A, Hosseini M (2015) Biaxial buckling analysis of double-orthotropic microplate-systems including in-plane magnetic field based on strain gradient theory. Compos B Eng 75:53–64

    Google Scholar 

  17. Sari MS, Al-Kouz WG (2016) Vibration analysis of non-uniform orthotropic Kirchhoff plates resting on elastic foundation based on nonlocal elasticity theory. Int J Mech Sci 114:1–11

    Google Scholar 

  18. Zargar O, Masoumi A, Moghaddam AO (2017) Investigation and optimization for the dynamical behaviour of the vehicle structure. Int J Automot Mech Eng 14:4196–4210

    Google Scholar 

  19. Mohammadsalehi M, Zargar O, Baghani M (2017) Study of non-uniform viscoelastic nanoplates vibration based on nonlocal first-order shear deformation theory. Meccanica 52:1063–1077

    MathSciNet  MATH  Google Scholar 

  20. Sahmani S, Aghdam MM (2017) Imperfection sensitivity of the size-dependent postbuckling response of pressurized FGM nanoshells in thermal environments. Arch Civil Mech Eng 17:623–638

    Google Scholar 

  21. Hashemi M, Asghari M (2017) On the size-dependent flexural vibration characteristics of unbalanced couple stress-based micro-spinning beams. Mech Des Struct Mach Int J 45:1–11

    Google Scholar 

  22. Shahriari B, Zargar O, Baghani M, Baniassadi M (2018) Free vibration analysis of rotating functionally graded annular disc of variable thickness using generalized differential quadrature method. Scientia Iranica 25:728–740

    Google Scholar 

  23. Zhang Y, Li G, Liew KM (2018) Thermomechanical buckling characteristic of ultrathin films based on nonlocal elasticity theory. Compos B Eng 153:184–193

    Google Scholar 

  24. Sahmani S, Fattahi AM, Ahmed NA (2019) Radial postbuckling of nanoscaled shells embedded in elastic foundations based on Ru’s surface stress elasticity theory. Mech Des Struct Mach Int J 47:787–806

    Google Scholar 

  25. Sahmani S, Aghdam MM (2019) Nonlocal electrothermomechanical instability of temperature-dependent FGM nanopanels with piezoelectric facesheets. Iran J Sci Technol Trans Mech Eng 43:579–593

    Google Scholar 

  26. Jalali MH, Zargar O, Baghani M (2019) Size-dependent vibration analysis of FG microbeams in thermal environment based on modified couple stress theory. Iran J Sci Technol Trans Mech Eng 43:761–771

    Google Scholar 

  27. Sahmani S, Fattahi AM, Ahmed NA (2019) Analytical mathematical solution for vibrational response of postbuckled laminated FG-GPLRC nonlocal strain gradient micro-/nanobeams. Eng Comput 35:1173–1189

    Google Scholar 

  28. Sarafraz A, Sahmani S, Aghdam MM (2019) Nonlinear secondary resonance of nanobeams under subharmonic and superharmonic excitations including surface free energy effects. Appl Math Model 66:195–226

    MathSciNet  MATH  Google Scholar 

  29. Sahmani S, Fattahi AM, Ahmed NA (2019) Surface elastic shell model for nonlinear primary resonant dynamics of FG porous nanoshells incorporating modal interactions. Int J Mech Sci 165:105

    Google Scholar 

  30. Radić N, Jeremić D (2016) Thermal buckling of double-layered graphene sheets embedded in an elastic medium with various boundary conditions using a nonlocal new first-order shear deformation theory. Compos B Eng 97:201–215

    Google Scholar 

  31. Wang B, Huang S, Zhao J, Zhou S (2016) Reconsiderations on boundary conditions of Kirchhoff micro-plate model based on a strain gradient elasticity theory. Appl Math Model 40:7303–7317

    MathSciNet  MATH  Google Scholar 

  32. Li C (2017) Nonlocal thermo-electro-mechanical coupling vibrations of axially moving piezoelectric nanobeams. Mech Des Struct Mach Int J 45:463–478

    Google Scholar 

  33. Sahmani S, Aghdam MM (2017) Size dependency in axial postbuckling behavior of hybrid FGM exponential shear deformable nanoshells based on the nonlocal elasticity theory. Compos Struct 166:104–113

    Google Scholar 

  34. Sahmani S, Aghdam MM (2017) Nonlinear instability of hydrostatic pressurized hybrid FGM exponential shear deformable nanoshells based on nonlocal continuum elasticity. Compos B Eng 114:404–417

    Google Scholar 

  35. Sahmani S, Aghdam MM (2017) Temperature-dependent nonlocal instability of hybrid FGM exponential shear deformable nanoshells including imperfection sensitivity. Int J Mech Sci 122:129–142

    Google Scholar 

  36. Ruocco E, Zhang H, Wang CM (2018) Buckling and vibration analysis of nonlocal axially functionally graded nanobeams based on Hencky-bar chain model. Appl Math Model 63:445–463

    MathSciNet  MATH  Google Scholar 

  37. Sahmani S, Aghdam MM (2018) Thermo-electro-radial coupling nonlinear instability of piezoelectric shear deformable nanoshells via nonlocal elasticity theory. Microsyst Technol 24:1333–1346

    Google Scholar 

  38. Dastjerdi S, Beni YT (2019) A novel approach for nonlinear bending response of macro- and nanoplates with irregular variable thickness under nonuniform loading in thermal environment. Mech Des Struct Mach Int J 47:453–478

    Google Scholar 

  39. Aria AI, Friswell MI (2019) A nonlocal finite element model for buckling and vibration of functionally graded nanobeams. Compos B Eng 166:233–246

    Google Scholar 

  40. Li H, Wang X, Wang H, Chen J (2020) The nonlocal frequency behavior of nanomechanical mass sensors based on the multi-directional vibrations of a buckled nanoribbon. Appl Math Model 77:1780–1796

    MathSciNet  MATH  Google Scholar 

  41. Lim CW, Zhang G, Reddy JN (2015) A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 78:298–313

    MathSciNet  MATH  Google Scholar 

  42. Sahmani S, Aghdam MM (2017) Size-dependent nonlinear bending of micro/nano-beams made of nanoporous biomaterials including a refined truncated cube cell. Phys Lett A 381:3818–3830

    MathSciNet  Google Scholar 

  43. Sahmani S, Aghdam MM (2017) Nonlinear vibrations of pre-and post-buckled lipid supramolecular micro/nano-tubules via nonlocal strain gradient elasticity theory. J Biomech 65:49–60

    Google Scholar 

  44. Sahmani S, Aghdam MM (2018) Nonlocal strain gradient beam model for postbuckling and associated vibrational response of lipid supramolecular protein micro/nano-tubules. Math Biosci 295:24–35

    MathSciNet  MATH  Google Scholar 

  45. Radic N (2018) On buckling of porous double-layered FG nanoplates in the Pasternak elastic foundation based on nonlocal strain gradient elasticity. Compos B Eng 153:465–479

    Google Scholar 

  46. Sahmani S, Safaei B (2019) Nonlinear free vibrations of bi-directional functionally graded micro/nano-beams including nonlocal stress and microstructural strain gradient size effects. Thin Walled Struct 140:342–356

    Google Scholar 

  47. Sahmani S, Safaei B (2019) Nonlocal strain gradient nonlinear resonance of bi-directional functionally graded composite micro/nano-beams under periodic soft excitation. Thin Walled Struct 143:106226

    Google Scholar 

  48. Jalali MH, Thai H-T (2019) Dynamic stability of viscoelastic porous FG nanoplate under longitudinal magnetic field via a nonlocal strain gradient quasi-3D theory. Compos B Eng 175:107164

    Google Scholar 

  49. Sahmani S, Fattahi AM, Ahmed NA (2019) Size-dependent nonlinear forced oscillation of self-assembled nanotubules based on the nonlocal strain gradient beam model. J Braz Soc Mech Sci Eng 41:239

    Google Scholar 

  50. Sahmani S, Fotouhi M, Aghdam MM (2019) Size-dependent nonlinear secondary resonance of micro-/nano-beams made of nano-porous biomaterials including truncated cube cells. Acta Mech 230:1077–1103

    MathSciNet  MATH  Google Scholar 

  51. Fattahi AM, Sahmani S, Ahmed NA (2019) Nonlocal strain gradient beam model for nonlinear secondary resonance analysis of functionally graded porous micro/nano-beams under periodic hard excitations. Mech Des Struct Mach Int J. https://doi.org/10.1080/15397734.2019.1624176

    Article  Google Scholar 

  52. Mohammadian M, Hosseini SM, Abolbashari MH (2019) Lateral vibrations of embedded hetero-junction carbon nanotubes based on the nonlocal strain gradient theory: analytical and differential quadrature element (DQE) methods. Physica E 105:68–82

    Google Scholar 

  53. Shen JP, Wang PY, Li C, Wang YY (2019) New observations on transverse dynamics of microtubules based on nonlocal strain gradient theory. Compos Struct 225:111036

    Google Scholar 

  54. Shen H-S (2011) Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments. Part II: pressure-loaded shells. Compos Struct 93:2496–2503

    Google Scholar 

  55. Shen H-S, Yang J, Kitipornchai S (2010) Postbuckling of internal pressure loaded FGM cylindrical shells surrounded by an elastic medium. Eur J Mech Solids 29:448–460

    Google Scholar 

  56. Sahmani S, Bahrami M, Aghdam MM (2016) Surface stress effects on the nonlinear postbuckling characteristics of geometrically imperfect cylindrical nanoshells subjected to axial compression. Int J Eng Sci 99:92–106

    MathSciNet  MATH  Google Scholar 

  57. Sahmani S, Aghdam MM, Bahrami M (2016) Size-dependent axial buckling and postbuckling characteristics of cylindrical nanoshells in different temperatures. Int J Mech Sci 107:170–179

    Google Scholar 

  58. Sahmani S, Aghdam MM (2017) Axial postbuckling analysis of multilayer functionally graded composite nanoplates reinforced with GPLs based on nonlocal strain gradient theory. Eur Phys J Plus 132:490

    Google Scholar 

  59. Ganapathi M (2007) Dynamic stability characteristics of functionally graded materials shallow spherical shells. Compos Struct 79:338–343

    Google Scholar 

  60. Kasagi A, Sridharan S (1993) Buckling and postbuckling analysis of thick composite cylindrical shells under hydrostatic pressure. Compos Eng 3:467–487

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$\varphi_{1} = \frac{{A_{11}^{*} }}{{\left( {A_{11}^{*} } \right)^{2} - \left( {A_{12}^{*} } \right)^{2} }},\quad \varphi_{2} = \frac{{A_{12}^{*} }}{{\left( {A_{11}^{*} } \right)^{2} - \left( {A_{12}^{*} } \right)^{2} }},\quad \varphi_{3} = \frac{{A_{11}^{*} B_{11}^{*} - A_{12}^{*} B_{12}^{*} }}{{\left( {A_{11}^{*} } \right)^{2} - \left( {A_{12}^{*} } \right)^{2} }}$$
$$\varphi_{4} = \frac{{A_{11}^{*} B_{12}^{*} - A_{12}^{*} B_{11}^{*} }}{{\left( {A_{11}^{*} } \right)^{2} - \left( {A_{12}^{*} } \right)^{2} }},\quad \varphi_{5} = \frac{{A_{11}^{*} B_{11}^{**} - A_{12}^{*} B_{12}^{**} }}{{\left( {A_{11}^{*} } \right)^{2} - \left( {A_{12}^{*} } \right)^{2} }},\quad \varphi_{6} = \frac{{A_{11}^{*} B_{12}^{**} - A_{12}^{*} B_{11}^{**} }}{{\left( {A_{11}^{*} } \right)^{2} - \left( {A_{12}^{*} } \right)^{2} }}$$
$$\varphi_{7} = \frac{1}{{A_{66}^{*} }},\quad \varphi_{8} = \frac{{B_{66}^{*} }}{{A_{66}^{*} }},\quad \varphi_{9} = \frac{{B_{66}^{**} }}{{A_{66}^{*} }}$$
$$\varphi_{10} = D_{11}^{*} - B_{11}^{*} \varphi_{3} - B_{12}^{*} \varphi_{4} ,\quad \varphi_{11} = D_{12}^{*} - B_{11}^{*} \varphi_{3} - B_{12}^{*} \varphi_{4}$$
$$\varphi_{12} = D_{66}^{*} - B_{66}^{*} \varphi_{8} ,\quad \varphi_{13} = B_{11}^{*} \varphi_{5} + B_{12}^{*} \varphi_{6} - D_{11}^{**}$$
(38)
$$\varphi_{14} = B_{12}^{*} \varphi_{5} + B_{11}^{*} \varphi_{6} - D_{12}^{**} ,\quad \varphi_{15} = B_{66}^{**} \varphi_{9} - D_{66}^{**}$$
$$\varphi_{16} = B_{12}^{**} \varphi_{1} - B_{11}^{**} \varphi_{2} , \varphi_{17} = B_{11}^{**} \varphi_{1} - B_{12}^{**} \varphi_{2} - B_{66}^{**} \varphi_{7}$$
$$\varphi_{18} = B_{11}^{**} \varphi_{3} + B_{12}^{**} \varphi_{4} - D_{11}^{**} ,\quad \varphi_{19} = B_{12}^{**} \varphi_{3} + B_{11}^{**} \varphi_{4} - D_{12}^{**}$$
$$\varphi_{20} = B_{66}^{**} \varphi_{8} - D_{66}^{** } ,\quad \varphi_{21} = G_{11}^{*} - B_{11}^{**} \varphi_{5} - B_{12}^{**} \varphi_{6}$$
$$\varphi_{22} = G_{66}^{*} - B_{66}^{**} \varphi_{9} ,\quad \varphi_{23} = G_{12}^{*} - B_{11}^{**} \varphi_{6} - B_{12}^{**} \varphi_{5} .$$

This point should be noted that the parameters of \(\vartheta_{i} \left( {i = 1, \ldots ,23} \right)\) are the dimensionless form of \(\varphi_{i}\).

The solutions in asymptotic forms corresponding to each of independent variables are extracted as below:

$$\begin{aligned} W = {\mathcal{A}}_{00}^{\left( 0 \right)} & + \epsilon^{3/2} \left[ {{\mathcal{A}}_{00}^{{\left( {3/2} \right)}} - {\mathcal{A}}_{00}^{{\left( {3/2} \right)}} \left( {\sin \left( {\frac{{\varGamma_{1} X}}{\sqrt \epsilon }} \right) + { \cos }\left( {\frac{{\varGamma_{1} X}}{\sqrt \epsilon }} \right)} \right)e^{{ - \frac{{\varGamma_{2} X}}{\sqrt \epsilon }}} - {\mathcal{A}}_{00}^{{\left( {3/2} \right)}} \left( {\sin \left( {\frac{{\varGamma_{1} \left( {\pi - X} \right)}}{\sqrt \epsilon }} \right) + { \cos }\left( {\frac{{\varGamma_{1} \left( {\pi - X} \right)}}{\sqrt \epsilon }} \right)} \right)e^{{ - \frac{{\varGamma_{2} \left( {\pi - X} \right)}}{\sqrt \epsilon }}} } \right] \\ & + \epsilon^{2} \left[ {{\mathcal{A}}_{00}^{\left( 2 \right)} + {\mathcal{A}}_{11}^{\left( 2 \right)} \sin \left( {mX} \right)\sin \left( {nY} \right) - {\mathcal{A}}_{00}^{\left( 2 \right)} \left( {\sin \left( {\frac{{\varGamma_{1} X}}{\sqrt \epsilon }} \right) + { \cos }\left( {\frac{{\varGamma_{1} X}}{\sqrt \epsilon }} \right)} \right)e^{{ - \frac{{\varGamma_{2} X}}{\sqrt \epsilon }}} - {\mathcal{A}}_{00}^{\left( 2 \right)} \left( {\sin \left( {\frac{{\varGamma_{1} \left( {\pi - X} \right)}}{\sqrt \epsilon }} \right) + { \cos }\left( {\frac{{\varGamma_{1} \left( {\pi - X} \right)}}{\sqrt \epsilon }} \right)} \right)e^{{ - \frac{{\varGamma_{2} \left( {\pi - X} \right)}}{\sqrt \epsilon }}} } \right] \\ & + \epsilon^{3} \left[ {{\mathcal{A}}_{00}^{\left( 3 \right)} + {\mathcal{A}}_{11}^{\left( 3 \right)} \sin \left( {mX} \right)\sin \left( {nY} \right)} \right] \\ & + \epsilon^{4} \left[ {{\mathcal{A}}_{00}^{\left( 4 \right)} + {\mathcal{A}}_{11}^{\left( 4 \right)} \sin \left( {mX} \right)\sin \left( {nY} \right) + {\mathcal{A}}_{20}^{\left( 4 \right)} \cos \left( {2mX} \right) + {\mathcal{A}}_{02}^{\left( 4 \right)} { \cos }\left( {2nY} \right)} \right] + O\left( {\epsilon^{5} } \right) \\ \end{aligned}$$
(39)
$$\begin{aligned} F = & - {\mathcal{B}}_{00}^{\left( 0 \right)} \left( {\beta^{2} X^{2} + \frac{{Y^{2} }}{2}} \right) + \epsilon \left[ { - {\mathcal{B}}_{00}^{\left( 1 \right)} \left( {\beta^{2} X^{2} + \frac{{Y^{2} }}{2}} \right)} \right] \\ & + \epsilon^{2} \left[ { - {\mathcal{B}}_{00}^{\left( 2 \right)} \left( {\beta^{2} X^{2} + \frac{{Y^{2} }}{2}} \right) + {\mathcal{B}}_{11}^{\left( 2 \right)} \sin \left( {mX} \right)\sin \left( {nY} \right)} \right] \\ & + \epsilon^{5/2} \left[ {{\mathcal{A}}_{00}^{{\left( {3/2} \right)}} \left( {b_{10}^{\left( 2 \right)} \sin \left( {\frac{{\varGamma_{1} X}}{\sqrt \epsilon }} \right) + b_{01}^{\left( 2 \right)} { \cos }\left( {\frac{{\varGamma_{1} X}}{\sqrt \epsilon }} \right)} \right)e^{{ - \frac{{\varGamma_{2} X}}{\sqrt \epsilon }}} + {\mathcal{A}}_{00}^{{\left( {3/2} \right)}} \left( {b_{10}^{\left( 2 \right)} \sin \left( {\frac{{\varGamma_{1} \left( {\pi - X} \right)}}{\sqrt \epsilon }} \right) + b_{01}^{\left( 2 \right)} { \cos }\left( {\frac{{\varGamma_{1} \left( {\pi - X} \right)}}{\sqrt \epsilon }} \right)} \right)e^{{ - \frac{{\varGamma_{2} \left( {\pi - X} \right)}}{\sqrt \epsilon }}} } \right] \\ & + \epsilon^{3} \left[ { - {\mathcal{B}}_{00}^{\left( 3 \right)} \left( {\beta^{2} X^{2} + \frac{{Y^{2} }}{2}} \right) + {\mathcal{A}}_{00}^{\left( 2 \right)} \left( {b_{10}^{\left( 3 \right)} \sin \left( {\frac{{\varGamma_{1} X}}{\sqrt \epsilon }} \right) + b_{01}^{\left( 3 \right)} { \cos }\left( {\frac{{\varGamma_{1} X}}{\sqrt \epsilon }} \right)} \right)e^{{ - \frac{{\varGamma_{2} X}}{\sqrt \epsilon }}} + {\mathcal{A}}_{00}^{\left( 2 \right)} \left( {b_{10}^{\left( 3 \right)} \sin \left( {\frac{{\varGamma_{1} \left( {\pi - X} \right)}}{\sqrt \epsilon }} \right) + b_{01}^{\left( 3 \right)} { \cos }\left( {\frac{{\varGamma_{1} \left( {\pi - X} \right)}}{\sqrt \epsilon }} \right)} \right)e^{{ - \frac{{\varGamma_{2} \left( {\pi - X} \right)}}{\sqrt \epsilon }}} } \right] \\ & + \epsilon^{4} \left[ { - {\mathcal{B}}_{00}^{\left( 4 \right)} \left( {\beta^{2} X^{2} + \frac{{Y^{2} }}{2}} \right) + {\mathcal{B}}_{20}^{\left( 4 \right)} \cos \left( {2mX} \right) + {\mathcal{B}}_{02}^{\left( 4 \right)} \cos \left( {2nY} \right)} \right] + O\left( {\epsilon^{5} } \right) \\ \end{aligned}$$
(40)
$$\begin{aligned} \varPsi_{X} & = \epsilon^{2} \begin{array}{*{20}c} {\left[ {{\mathcal{C}}_{11}^{\left( 2 \right)} \cos \left( {mX} \right){ \sin }\left( {nY} \right) + \left( {c_{10}^{\left( 2 \right)} \sin \left( {\frac{{\varGamma_{1} X}}{\sqrt \epsilon }} \right) + c_{01}^{\left( 2 \right)} \cos \left( {\frac{{\varGamma_{1} X}}{\sqrt \epsilon }} \right)} \right)e^{{ - \frac{{\varGamma_{2} X}}{\sqrt \epsilon }}} } \right.} \\ {\left. { + \left( {c_{10}^{\left( 2 \right)} \sin \left( {\frac{{\varGamma_{1} \left( {\pi - X} \right)}}{\sqrt \epsilon }} \right) + c_{01}^{\left( 2 \right)} \cos \left( {\frac{{\varGamma_{1} \left( {\pi - X} \right)}}{\sqrt \epsilon }} \right)} \right)e^{{ - \frac{{\varGamma_{2} \left( {\pi - X} \right)}}{\sqrt \epsilon }}} } \right]} \\ \end{array} \\ & \quad + \epsilon^{3} \left[ {{\mathcal{C}}_{11}^{\left( 3 \right)} \cos \left( {mX} \right){ \sin }\left( {nY} \right)} \right] + \epsilon^{4} \left[ {{\mathcal{C}}_{11}^{\left( 4 \right)} \cos \left( {mX} \right){ \sin }\left( {nY} \right) + {\mathcal{C}}_{20}^{\left( 4 \right)} { \sin }\left( {2mX} \right)} \right] + O\left( {\epsilon^{5} } \right) \\ \end{aligned}$$
(41)
$$\begin{aligned} \varPsi_{Y} & = \epsilon^{2} \left[ {{\mathcal{D}}_{11}^{\left( 2 \right)} \sin \left( {mX} \right){ \cos }\left( {nY} \right)} \right] + \epsilon^{3} \left[ {{\mathcal{D}}_{11}^{\left( 3 \right)} \sin \left( {mX} \right){ \cos }\left( {nY} \right)} \right] \\ & \quad + \epsilon^{4} \left[ {{\mathcal{D}}_{11}^{\left( 4 \right)} \sin \left( {mX} \right){ \cos }\left( {nY} \right) + {\mathcal{D}}_{02}^{\left( 4 \right)} \sin \left( {2nY} \right)} \right] + O\left( {\epsilon^{5} } \right) , \\ \end{aligned}$$
(42)

in which

$$\varGamma_{1} = \sqrt {\frac{{\sqrt {\frac{1}{{\vartheta_{4}^{2} }}} + \frac{{\vartheta_{4} }}{{\vartheta_{1} \vartheta_{2} + \vartheta_{4}^{2} }}}}{2}} ,\quad \varGamma_{2} = \sqrt {\frac{{\sqrt {\frac{1}{{\vartheta_{4}^{2} }}} - \frac{{\vartheta_{4} }}{{\vartheta_{1} \vartheta_{2} + \vartheta_{4}^{2} }}}}{2}} .$$
(43)

Appendix B

$${\mathcal{P}}_{q}^{\left( 0 \right)} = {\mathcal{U}}_{0} {\mathcal{U}}_{1} {\mathcal{U}}_{8} + {\mathcal{U}}_{2} {\mathcal{U}}_{8} \epsilon^{2}$$
(44)
$$\begin{aligned} {\mathcal{P}}_{q}^{\left( 2 \right)} & = 8{\mathcal{U}}_{1} {\mathcal{U}}_{3} {\mathcal{U}}_{7} {\mathcal{U}}_{8} + \frac{{8{\mathcal{U}}_{1} {\mathcal{U}}_{3} {\mathcal{U}}_{8} \left( {{\mathcal{U}}_{0} {\mathcal{U}}_{1} {\mathcal{U}}_{6} {\mathcal{U}}_{8} H_{20} + {\mathcal{U}}_{0} {\mathcal{U}}_{3} {\mathcal{U}}_{5} H_{20} } \right)}}{{{\mathcal{U}}_{0} {\mathcal{U}}_{1} {\mathcal{U}}_{8} H_{20} - {\mathcal{U}}_{5} }} + \frac{{8{\mathcal{U}}_{1} {\mathcal{U}}_{3} \left( {{\mathcal{U}}_{0} {\mathcal{U}}_{6} + {\mathcal{U}}_{0}^{2} {\mathcal{U}}_{3} H_{20} } \right)}}{{{\mathcal{U}}_{0} {\mathcal{U}}_{1} {\mathcal{U}}_{8} H_{20} - {\mathcal{U}}_{5} }} \\ & \quad + \frac{{8{\mathcal{U}}_{0} {\mathcal{U}}_{1} {\mathcal{U}}_{3} \left( {{\mathcal{U}}_{6} + {\mathcal{U}}_{0} {\mathcal{U}}_{3} } \right)}}{{{\mathcal{U}}_{0} {\mathcal{U}}_{1} {\mathcal{U}}_{8} - {\mathcal{U}}_{5} }} + 16{\mathcal{U}}_{0} {\mathcal{U}}_{3} {\mathcal{U}}_{4} {\mathcal{U}}_{8} \\ \end{aligned}$$
(45)
$$\delta_{q}^{\left( 0 \right)} = \left[ {\frac{{\vartheta_{1} }}{2} - \vartheta_{2} + \left( {\frac{{\left( {2\vartheta_{1} \vartheta_{2} - \vartheta_{2}^{2} } \right)\varGamma_{2} }}{{\pi \vartheta_{1} \left( {\varGamma_{1}^{2} + \varGamma_{2}^{2} } \right)}}} \right)\epsilon^{1/2} } \right]{\mathcal{P}}_{q} + \left[ {\left( {\frac{{3^{1/4} \left( {\varGamma_{1}^{2} + \varGamma_{2}^{2} } \right)\left( {2\vartheta_{1} - \vartheta_{2} } \right)^{2} }}{{6\pi \varGamma_{2} }}} \right)\epsilon } \right]{\mathcal{P}}_{q}^{2}$$
(46)
$$\delta_{q}^{\left( 2 \right)} = \left[ {\frac{{3^{3/4} m^{2} }}{32}} \right]\epsilon^{ - 3/2} ,$$
(47)

where

$$H_{11} = 1 + \pi^{2} {\mathcal{G}}_{1}^{2} \left( {m^{2} + \beta^{2} n^{2} } \right),\quad H_{20} = 1 + 4\pi^{2} {\mathcal{G}}_{1}^{2} m^{2}$$
(48)
$$G_{11} = 1 + \pi^{2} {\mathcal{G}}_{2}^{2} \left( {m^{2} + \beta^{2} n^{2} } \right),$$

where \({\mathcal{U}}_{i} \left( {i = 0, \ldots ,8} \right)\) are constant parameters extracted via the perturbation sets of equations:

$${\mathcal{S}}_{1} = - \left[ {\left( {2\vartheta_{1} - \vartheta_{2} } \right)\left( {{\mathcal{P}}_{q}^{\left( 2 \right)} } \right)} \right]$$
(49)
$${\mathcal{S}}_{2} = - \left( {2\vartheta_{1} - \vartheta_{2} } \right)\left( {{\mathcal{P}}_{q}^{\left( 0 \right)} } \right).$$
(50)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Sahmani, S. & Safaei, B. Postbuckling analysis of hydrostatic pressurized FGM microsized shells including strain gradient and stress-driven nonlocal effects. Engineering with Computers 37, 1549–1564 (2021). https://doi.org/10.1007/s00366-019-00901-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00901-2

Keywords

Navigation