Skip to main content
Log in

Numerical solution of the fractional Rayleigh–Stokes model arising in a heated generalized second-grade fluid

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This paper addresses the solution of the Rayleigh–Stokes problem for an edge in a generalized Oldroyd-B fluid using fractional derivatives and the radial basis function-generated finite difference (RBF-FD) method. The time discretization is accomplished via the finite difference approach, while the spatial derivative terms are discretized using the local RBF-FD. The main idea is to consider the distribution of the data nodes within the local support domain so that the number of nodes remains constant. In addition, the stability and convergence analysis of the proposed method are discussed. The results using the RBF-FD are compared with those of other techniques on irregular domains showing the feasibility and efficiency of the new approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abbaszadeh M, Dehghan M (2019) Meshless upwind local radial basis function-finite difference technique to simulate the time-fractional distributed-order advection-diffusion equation. Eng Comput 20:1–17

    Google Scholar 

  2. Bandelli R, Rajagopal K (1995) Start-up flows of second grade fluids in domains with one finite dimension. Int J Non-Linear Mech 30(6):817–839

    MathSciNet  MATH  Google Scholar 

  3. Buhmann MD (2003) Radial basis functions: theory and implementations, vol 12. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  4. Chen CM, Liu F, Anh V (2008) Numerical analysis of the Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives. Appl Math Comput 204(1):340–351

    MathSciNet  MATH  Google Scholar 

  5. Cheney EW, Light WA (2009) A course in approximation theory, vol 101. American Mathematical Society, New York

    MATH  Google Scholar 

  6. Chenoweth ME (2012) A local radial basis function method for the numerical solution of partial differential equations

  7. Dehghan M, Abbaszadeh M (2017) A finite element method for the numerical solution of Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives. Eng Comput 33(3):587–605

    Google Scholar 

  8. Dehghan M, Abbaszadeh M, Mohebbi A (2015) An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein–Gordon equations. Eng Anal Bound Elem 50:412–434

    MathSciNet  MATH  Google Scholar 

  9. Dehghan M, Abbaszadeh M, Mohebbi A (2016) Analysis of a meshless method for the time fractional diffusion-wave equation. Numerical Algorithms 73(2):445–476

    MathSciNet  MATH  Google Scholar 

  10. Dehghan M, Mohammadi V (2017) A numerical scheme based on radial basis function finite difference (RBF-FD) technique for solving the high-dimensional nonlinear Schrödinger equations using an explicit time discretization: Runge-Kutta method. Comput Phys Commun 217:23–34

    MathSciNet  MATH  Google Scholar 

  11. Driscoll TA, Fornberg B (2002) Interpolation in the limit of increasingly flat radial basis functions. Comput Math Appl 43(3–5):413–422

    MathSciNet  MATH  Google Scholar 

  12. Fasshauer GE (2007) Meshfree approximation methods with matlab: (With CD-ROM), vol 6. World Scientific Publishing Company, Singapore

    MATH  Google Scholar 

  13. Fetecău C, Zierep J (2001) On a class of exact solutions of the equations of motion of a second grade fluid. Acta Mech 150(1–2):135–138

    MATH  Google Scholar 

  14. Fornberg B, Larsson E, Flyer N (2011) Stable computations with Gaussian radial basis functions. SIAM J Sci Comput 33(2):869–892

    MathSciNet  MATH  Google Scholar 

  15. Fornberg B, Lehto E, Powell C (2013) Stable calculation of Gaussian-based RBF-FD stencils. Comput Math Appl 65(4):627–637

    MathSciNet  MATH  Google Scholar 

  16. Fornberg B, Piret C (2007) A stable algorithm for flat radial basis functions on a sphere. SIAM J Sci Comput 30(1):60–80

    MathSciNet  MATH  Google Scholar 

  17. Fornberg B, Zuev J (2007) The Runge phenomenon and spatially variable shape parameters in RBF interpolation. Comput Math Appl 54(3):379–398

    MathSciNet  MATH  Google Scholar 

  18. Franke C, Schaback R (1998) Convergence order estimates of meshless collocation methods using radial basis functions. Adv Comput Math 8(4):381–399

    MathSciNet  MATH  Google Scholar 

  19. Franke R (1982) Scattered data interpolation: tests of some methods. Math Comput 38(157):181–200

    MathSciNet  MATH  Google Scholar 

  20. Fu ZJ (2016) Radial basis function methods for fractional derivative applications. In: ASME 2015 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers Digital Collection

  21. Golbabai A, Mammadov M, Seifollahi S (2009) Solving a system of nonlinear integral equations by an RBF network. Comput Math Appl 57(10):1651–1658

    MathSciNet  MATH  Google Scholar 

  22. Golbabai A, Mohebianfar E, Rabiei H (2015) On the new variable shape parameter strategies for radial basis functions. Comput Appl Math 34(2):691–704

    MathSciNet  MATH  Google Scholar 

  23. Golbabai A, Nikan O (2019) A computational method based on the moving least-squares approach for pricing double barrier options in a time-fractional Black-Scholes model. Comput Econ 1:1–23. https://doi.org/10.1007/s10614-019-09880-4

    Article  Google Scholar 

  24. Golbabai A, Nikan O, Nikazad T (2019) Numerical analysis of time fractional Black–Scholes European option pricing model arising in financial market. Comput Appl Math 38(4):173

    MathSciNet  MATH  Google Scholar 

  25. Golbabai A, Rabiei H (2012) A meshfree method based on radial basis functions for the eigenvalues of transient stokes equations. Eng Anal Bound Elem 36(11):1555–1559

    MathSciNet  MATH  Google Scholar 

  26. Golbabai A, Seifollahi S (2006) Numerical solution of the second kind integral equations using radial basis function networks. Appl Math Comput 174(2):877–883

    MathSciNet  MATH  Google Scholar 

  27. Haq S, Hussain M, Ghafoor A (2019) A computational study of variable coefficients fractional advection-diffusion-reaction equations via implicit meshless spectral algorithm. Eng Comput 20:1–21

    Google Scholar 

  28. Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 76(8):1905–1915

    Google Scholar 

  29. Hardy RL (1990) Theory and applications of the multiquadric–biharmonic method 20 years of discovery 1968–1988. Comput Math Appl 19(8–9):163–208

    MathSciNet  MATH  Google Scholar 

  30. Hassani H, Avazzadeh Z, Machado JT (2019) Numerical approach for solving variable-order space-time fractional telegraph equation using transcendental bernstein series. Eng Comput 20:1–12

    Google Scholar 

  31. Kansa E, Carlson R (1992) Improved accuracy of multiquadric interpolation using variable shape parameters. Comput Math Appl 24(12):99–120

    MathSciNet  MATH  Google Scholar 

  32. Kansa E, Hon Y (2000) Circumventing the ill-conditioning problem with multiquadric radial basis functions: applications to elliptic partial differential equations. Comput Math Appl 39(7–8):123–138

    MathSciNet  MATH  Google Scholar 

  33. Kansa EJ (1990) Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates. Comput Math Appl 19(8–9):127–145

    MathSciNet  MATH  Google Scholar 

  34. Kansa EJ (1990) Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput Math Appl 19(8–9):147–161

    MathSciNet  MATH  Google Scholar 

  35. Kansa EJ, Aldredge RC, Ling L (2009) Numerical simulation of two-dimensional combustion using mesh-free methods. Eng Anal Bound Elem 33(7):940–950

    MathSciNet  MATH  Google Scholar 

  36. Li N, Su H, Gui D, Feng X (2018) Multiquadric RBF-FD method for the convection-dominated diffusion problems base on Shishkin nodes. Int J Heat Mass Transf 118:734–745

    Google Scholar 

  37. Liu F, Zhuang P, Anh V, Turner I, Burrage K (2007) Stability and convergence of the difference methods for the space-time fractional advection–diffusion equation. Appl Math Comput 191(1):12–20

    MathSciNet  MATH  Google Scholar 

  38. Machado JT, Kiryakova V, Mainardi F (2011) Recent history of fractional calculus. Commun Nonlinear Sci Numer Simul 16(3):1140–1153

    MathSciNet  MATH  Google Scholar 

  39. Madych W, Nelson S (1990) Multivariate interpolation and conditionally positive definite functions. ii. Math Comput 54(189):211–230

    MathSciNet  MATH  Google Scholar 

  40. Micchelli CA (1984) Interpolation of scattered data: distance matrices and conditionally positive definite functions. Approximation theory and spline functions. Springer, Berlin, pp 143–145

    Google Scholar 

  41. Mirzaee F, Samadyar N (2019) Combination of finite difference method and meshless method based on radial basis functions to solve fractional stochastic advection-diffusion equations. Eng Comput 20:1–14

    MATH  Google Scholar 

  42. Mohebbi A, Abbaszadeh M, Dehghan M (2013) Compact finite difference scheme and RBF meshless approach for solving 2D Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives. Comput Methods Appl Mech Eng 264:163–177

    MathSciNet  MATH  Google Scholar 

  43. Nikan O, Golbabai A, Nikazad T (2019) Solitary wave solution of the nonlinear KdV-Benjamin–Bona–Mahony–Burgers model via two meshless methods. Eur Phys J Plus 134(7):367

    Google Scholar 

  44. Nikan O, Machado JT, Golbabai A, Nikazad T (2019) Numerical investigation of the nonlinear modified anomalous diffusion process. Nonlinear Dyn 97(4):2757–2775

    MATH  Google Scholar 

  45. Oldham KB, Spanier J (1974) The fractional calculus, vol. 111 of mathematics in science and engineering

  46. Oruç Ö, Esen A, Bulut F (2019) A haar wavelet approximation for two-dimensional time fractional reaction–subdiffusion equation. Eng Comput 35(1):75–86

    Google Scholar 

  47. Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198. Elsevier, Oxford

    MATH  Google Scholar 

  48. Pourbashash H, Oshagh MKe (2018) Local RBF-FD technique for solving the two-dimensional modified anomalous sub-diffusion equation. Appl Math Comput 339:144–152

    MathSciNet  MATH  Google Scholar 

  49. Rabiei K, Ordokhani Y (2019) Solving fractional pantograph delay differential equations via fractional-order boubaker polynomials. Eng Comput 35(4):1431–1441

    Google Scholar 

  50. Rajagopal K (1982) A note on unsteady unidirectional flows of a non-Newtonian fluid. Int J Non-Linear Mech 17(5–6):369–373

    MathSciNet  MATH  Google Scholar 

  51. Rashidinia J, Khasi M, Fasshauer G (2018) A stable Gaussian radial basis function method for solving nonlinear unsteady convection–diffusion–reaction equations. Comput Math Appl 75(5):1831–1850

    MathSciNet  MATH  Google Scholar 

  52. Rashidinia J, Rasoulizadeh MN (2019) Numerical methods based on radial basis function-generated finite difference (RBF-FD) for solution of GKdVB equation. Wave Motion 90:152–167

    MathSciNet  MATH  Google Scholar 

  53. Sabatier J, Agrawal OP, Machado JT (2007) Advances in fractional calculus, vol 4. Springer, Berlin

    MATH  Google Scholar 

  54. Sarra SA (2012) A local radial basis function method for advection–diffusion–reaction equations on complexly shaped domains. Appl Math Comput 218(19):9853–9865

    MathSciNet  MATH  Google Scholar 

  55. Sarra SA, Kansa EJ (2009) Multiquadric radial basis function approximation methods for the numerical solution of partial differential equations. Adv Comput Mech 2:2

    Google Scholar 

  56. Sarra SA, Sturgill D (2009) A random variable shape parameter strategy for radial basis function approximation methods. Eng Anal Bound Elem 33(11):1239–1245

    MathSciNet  MATH  Google Scholar 

  57. Schaback R (1995) Error estimates and condition numbers for radial basis function interpolation. Adv Comput Math 3(3):251–264

    MathSciNet  MATH  Google Scholar 

  58. Shen F, Tan W, Zhao Y, Masuoka T (2006) The Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivative model. Nonlinear Anal Real World Appl 7(5):1072–1080

    MathSciNet  MATH  Google Scholar 

  59. Shivanian E, Jafarabadi A (2018) Rayleigh–Stokes roblem for a heated generalized second grade fluid with fractional derivatives: a stable scheme based on spectral meshless radial point interpolation. Eng Comput 34(1):77–90

    Google Scholar 

  60. Shu C, Ding H, Yeo K (2003) Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 192(7–8):941–954

    MATH  Google Scholar 

  61. Sturgill DJ (2009) Variable shape parameter strategies in radial basis funchtion methods. Ph.D. thesis, Marshall University Libraries

  62. Tan W, Masuoka T (2005) Stokes’ first problem for a second grade fluid in a porous half-space with heated boundary. Int J Non-Linear Mech 40(4):515–522

    MATH  Google Scholar 

  63. Tenreiro Machado JA, Lopes AM (2019) Fractional-order kinematic analysis of biomechanical inspired manipulators. J Vib Control 26(1–2):102–111

    MathSciNet  Google Scholar 

  64. Tolstykh A, Shirobokov D (2003) On using radial basis functions in a “finite difference mode” with applications to elasticity problems. Comput Mech 33(1):68–79

    MathSciNet  MATH  Google Scholar 

  65. Wendland H (2004) Scattered data approximation, vol 17. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  66. Wright GB, Fornberg B (2006) Scattered node compact finite difference-type formulas generated from radial basis functions. J Comput Phys 212(1):99–123

    MathSciNet  MATH  Google Scholar 

  67. Yang XJ (2018) New rheological problems involving general fractional derivatives with nonsingular power-law kernels. Proc Roman Acad Ser A Math Phys Tech Sci Inf Sci 19(1):45–52

    MathSciNet  Google Scholar 

  68. Yang XJ (2019) General fractional derivatives: theory, methods and applications. Chapman and Hall, New York

    MATH  Google Scholar 

  69. Yang XJ (2019) New general calculi with respect to another functions applied to describe the Newton-like dashpot models in anomalous. Therm Sci 23(6B):3751–3757

    Google Scholar 

  70. Yang XJ (2019) New non-conventional methods for quantitative concepts of anomalous rheology. Therm Sci 23(6B):4117–4127

    Google Scholar 

  71. Yang XJ, Gao F, Jing HW (2019) New mathematical models in anomalous viscoelasticity from the derivative with respect to another function view point. Therm Sci 23(3A):1555–1561

    Google Scholar 

  72. Yang XJ, Gao F, Srivastava H (2017) Non-differentiable exact solutions for the nonlinear ODEs defined on fractal sets. Fractals 25(04):1740002

    MathSciNet  Google Scholar 

  73. Yang XJ, Machado JT (2019) A new fractal nonlinear Burger’s equation arising in the acoustic signals propagation. Math Methods Appl Sci 42(18):7539–7544

    MathSciNet  MATH  Google Scholar 

  74. Yuste SB (2006) Weighted average finite difference methods for fractional diffusion equations. J Comput Phys 216(1):264–274

    MathSciNet  MATH  Google Scholar 

  75. Zhou Y, Peng L, Huang Y (2018) Duhamel’s formula for time-fractional Schrödinger equations. Math Methods Appl Sci 41(17):8345–8349

    MathSciNet  MATH  Google Scholar 

  76. Zhuang P, Liu Q (2009) Numerical method of Rayleigh–Stokes problem for heated generalized second grade fluid with fractional derivative. Appl Math Mech 30(12):1533

    MathSciNet  MATH  Google Scholar 

  77. Zierep J, Fetecau C (2007) Energetic balance for the Rayleigh–Stokes problem of a Maxwell fluid. Int J Eng Sci 45(2–8):617–627

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express our appreciation to the Editor-in-Chief, Professor Mark Shephard, and the anonymous reviewers for their valuable comments and suggestions leading to the improved manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Golbabai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikan, O., Golbabai, A., Machado, J.A.T. et al. Numerical solution of the fractional Rayleigh–Stokes model arising in a heated generalized second-grade fluid. Engineering with Computers 37, 1751–1764 (2021). https://doi.org/10.1007/s00366-019-00913-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00913-y

Keywords

Mathematics Subject Classification

Navigation