Skip to main content
Log in

Magnetohydrodynamics (MHD) simulation via an adaptive element free Galerkin method

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this work, an adaptive element free Galerkin technique is presented to solve magnetohydrodynamics (MHD) equations. An a posteriori error estimation based on gradient recovery is suggested to find locations with largest error contribution. For stabilization, the MHD equations are converted into two convection diffusion equations and these equations are stabilized by adding an artificial diffusion based on local Péclet number. The presented numerical examples show efficiency of the adaptive technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Atluri S, Cho J, Kim H (1999) Analysis of thin beams, using the meshless local Petrov–Galerkin method with generalized moving least squares interpolations. Comput Mech 24:334–347

    MATH  Google Scholar 

  2. Atluri S, Zhu T (1998) A modied collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Comput Mech 21:211–222

    MathSciNet  MATH  Google Scholar 

  3. Bank R, Weiser A (1985) Some a posteriori error estimator for elliptic partial differential equations. Math Comput 44:283–301

    MathSciNet  MATH  Google Scholar 

  4. Belytschko T, Lu Y, Gu L (1994) Element free Galerkin methods. Int J Numer Methods Eng 37:229–256

    MathSciNet  MATH  Google Scholar 

  5. Boyd T, Sanderson J (2003) The physics of plasmas. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  6. Burman E, Hansbo P (2004) Edge stabilization for Galerkin approximations of convection–diffusion–reaction problems. Comput Methods Appl Mech Eng 193:1437–1453

    MathSciNet  MATH  Google Scholar 

  7. Ciarlet P (1978) The finite element method for elliptic problems. North-Holland, Amsterdam

    MATH  Google Scholar 

  8. Cavoretto R, De Rossi A (2019) Adaptive meshless refinement schemes for RBF-PUM collocation. Appl Math Lett 90:131–138

    MathSciNet  MATH  Google Scholar 

  9. Cavoretto R, De Rossi A (2020) A two-stage adaptive scheme based on RBF collocation for solving elliptic PDEs. Comoput Math Appl. https://doi.org/10.1016/j.camwa.2020.01.018

    Article  MATH  Google Scholar 

  10. Cavoretto R, De Rossi A (2020) An adaptive LOOCV-based refinement scheme for RBF collocation methods over irregular domains. Appl Math Lett. https://doi.org/10.1016/j.aml.2019.106178

    Article  MathSciNet  MATH  Google Scholar 

  11. Chung H, Belytschko T (1998) An error estimate in the EFG method. Comput Mech 21:91–100

    MathSciNet  MATH  Google Scholar 

  12. Dehghan M, Abbaszadeh M (2018) A reduced proper orthogonal decomposition (POD) element free Galerkin (POD-EFG) method to simulate two dimensional solute transport problems and error estimate. Appl Numer Math 126:92–112

    MathSciNet  MATH  Google Scholar 

  13. Dehghan M, Abbaszadeh M (2016) Proper orthogonal decomposition variational multiscale element free Galerkin (POD-VMEFG) meshless method for solving incompressible Navier–Stokes equation. Comput Methods Appl Mech Eng 311:856–888

    MathSciNet  MATH  Google Scholar 

  14. Dehghan M, Abbaszadeh M (2019) Error analysis and numerical simulation of magnetohydrodynamics (MHD) equation based on the interpolating element free Galerkin (IEFG) method. Appl Numer Math 137:252–273

    MathSciNet  MATH  Google Scholar 

  15. Dehghan M, Salehi M (2013) A meshfree weak-strong (MWS) form method for the unsteady magnetohydrodynamic (MHD) ow in pipe with arbitrary wall conductivity. Comput Mech 52:1445–1462

    MathSciNet  MATH  Google Scholar 

  16. Dehgghan M, Mohammadi V (2015) The method of variably scaled radial kernels for solving two-dimensional magnetohydrodynamic (MHD) equations using two discretizations: The Crank-Nicolson scheme and the method of lines (MOL). Comput Math Appl 70:2292–2315

    MathSciNet  MATH  Google Scholar 

  17. Dehghan M, Haghjoo-Saniji M (2017) The local radial point interpolation meshless method for solving Maxwell equations. Eng Comput 33:897–918

    Google Scholar 

  18. Demendy Z, Nagy T (1997) A new algorithm for solution of equations of MHD channel flows at moderate Hartmann numbers. Acta Mech 123:135–149

    MATH  Google Scholar 

  19. Dolbow J, Belytschko T (1999) Numerical integration of the Galerkin weak form in meshfree methods. Comput Mech 23:219–230

    MathSciNet  MATH  Google Scholar 

  20. Dolbow J, Belytschko T (1998) An introduction to programming the meshless element free Galerkin method. Comput Methods Eng 5(3):207–241

    MathSciNet  Google Scholar 

  21. Eriksson K, Estep D, Hansbo P, Johnson C (1995) Introduction to adaptive methods for differential equations. Acta Numer 4:105–158

    MathSciNet  MATH  Google Scholar 

  22. Fu P, Li F, Xu Y (2018) Globally divergence-free discontinuous Galerkin methods for ideal magnetohydrodynamic equations. J Sci Comput 77(3):1621–1659

    MathSciNet  MATH  Google Scholar 

  23. Gockenbach M (2006) Understanding and implementing the finite element method. SIAM, Philadelphia

    MATH  Google Scholar 

  24. Gratsch T, Bathe K (2005) A posteriori error estimation techniques in practical finite element analysis. Comput Struct 83:235–265

    MathSciNet  Google Scholar 

  25. Guillet T, Pakmor R, Springel V, Chandrashekar P, Klingenberg C. High-order magnetohydrodynamics for astrophysics with an adaptive mesh refinement discontinuous Galerkin scheme. arXiv:1806.02343

  26. Hartmann J, Lazarus F (1937) Experimental investigations on the flow of mercury in a homogeneous magnetic field. K Dan Vidensk Selsk Mat Fys Medd 15(6):1–45

    Google Scholar 

  27. Hosseinzadeh H, Dehghan M, Mirzaei D (2013) The boundary elements method for magneto-hydrodynamic (MHD) channel flows at high Hartmann numbers. Appl Math Model 37:2337–2351

    MathSciNet  MATH  Google Scholar 

  28. Hsieh P, Yang S (2009) A bubble-stabilized least-squares finite element method for steady MHD duct flow problems at high Hartmann numbers. J Comput Phys 228:8301–8320

    MathSciNet  MATH  Google Scholar 

  29. John V (2000) A numerical study of a posteriori error estimators for convection–diffusion equations. Comput Methods Appl Mech Eng 190:757–781

    MathSciNet  MATH  Google Scholar 

  30. Kamranian M, Dehghan M, Tatari M (2017) An adaptive meshless local Petrov–Galerkin method based on a posteriori error estimation for the boundary layer problems. Appl Numer Math 111:181–196

    MathSciNet  MATH  Google Scholar 

  31. Lancaster P, Salkauskas K (1981) Surface generated by moving least squares methods. Math Comput 37:141–158

    MathSciNet  MATH  Google Scholar 

  32. Lankalapalli S, Flaherty J, Shephard M, Strauss H (2007) An adaptive finite element method for magnetohydrodynamics. J Comput Phys 225(1):363–381

    MathSciNet  MATH  Google Scholar 

  33. Larson M, Bengzon F (2013) The finite element method, theory, implementation and applications. Springer, Berlin

    MATH  Google Scholar 

  34. Li X (2018) Three-dimensional complex variable element-free Galerkin method. Appl Math Model 63:148–171

    MathSciNet  MATH  Google Scholar 

  35. Nguyen V, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79(3):763–813

    MathSciNet  MATH  Google Scholar 

  36. Shakeri F, Dehghan M (2011) A nite volume spectral element method for solving magnetohydrodynamic (MHD) equations. Appl Numer Math 61:1–23

    MathSciNet  MATH  Google Scholar 

  37. Shercliff J (1953) Steady motion of conducting fluids in pipes under the action of transverse magnetic field. Math Proc Camb Philos Soc 49(1):136–144

    MathSciNet  MATH  Google Scholar 

  38. Shercliff J (1962) Magnetohydrodynamics pipe flow part II, high Hartmaan number. J Fluid Mech 13(4):513–518

    MathSciNet  MATH  Google Scholar 

  39. Schnack D, Lottati I, Mikic Z, Satyanarayana P (1998) A finite-volume algorithm for three dimensional magnetohydrodynamics on an unstructured, adaptive grid in axially symmetric geometry. J Comput Phys 140:71–121

    MathSciNet  MATH  Google Scholar 

  40. Strauss H, Longcope D (1998) An adaptive finite element method for magnetohydrodynamics. J Comput Phys 147:318–336

    MathSciNet  MATH  Google Scholar 

  41. Tatari M, Ghasemi F (2014) The Galerkin boundary node method for magneto-hydrodynamic (MHD) equation. J Comput Phys 258:634–649

    MathSciNet  MATH  Google Scholar 

  42. Verardi S, Machado J, Shiyou Y (2003) The application of interpolating MLS approximations to the analysis of MHD flows. Finite Elem Anal Des 39(12):1173–1187

    Google Scholar 

  43. Yaw L (2009) Introduction to moving least squares (MLS) shape functions. Walla Walla University, Washington

    Google Scholar 

  44. Zhang L, Ouyang J, Zhang X (2008) The two-level element free Galerkin method for MHD flow at high Hartmann numbers. Phys Lett 372:5625–5638

    MATH  Google Scholar 

  45. Zienkiewicz O, Zhu J (1992) The superconvergent path recovery and a posteriori error estimation. Part \(1\): the recovery technique. Int J Numer Methods Eng 33:1365–1382

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to reviewers for carefully reading the paper and for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Tatari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jannesari, Z., Tatari, M. Magnetohydrodynamics (MHD) simulation via an adaptive element free Galerkin method. Engineering with Computers 38, 679–693 (2022). https://doi.org/10.1007/s00366-020-01079-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01079-8

Keywords

Navigation