Skip to main content
Log in

Application of improved element-free Galerkin combining with finite strip method for buckling analysis of channel-section beams with openings

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, a coupling of improved element-free Galerkin with the finite strip (IEFG-FS) is used to investigate the buckling analysis of cold-formed steel (CFS) channel-section beam with web holes. For this purpose, three sections of the CFS channel are considered under bending loading. These sections are divided into two sub-domains in which the IEFG method is used in sub-domain with openings, and the finite strip (FS) method is applied for another sub-domain. In the IEFG domain, the boundary conditions are enforced using the Lagrange multiplier method. In the following, hole size effects are investigated on the moment buckling load of sections. The results show that the IEFG-FS is an efficient method for buckling analysis of channel-section beams. Moreover, the presence of holes in CFS channel section reduces the moment buckling load, so that the decrease in the local buckling is more than the distortional and global buckling loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Datta PK (1976) Experimental study of the static and dynamic behaviour of a tensioned sheet with a rectangular opening. Aeronaut Quart 27:257–262. https://doi.org/10.1017/s0001925900007769

    Article  Google Scholar 

  2. Brown CJ, Yettram AL (1986) The elastic stability of square perforated plates under combinations of bending, shear and direct load. Thin-Walled Struct 4:239–246. https://doi.org/10.1016/0263-8231(86)90005-4

    Article  Google Scholar 

  3. Yettram AL, Brown CJ (1986) The elastic stability of square perforated plates under bi-axial loading. Comput Struct 22:589–594. https://doi.org/10.1016/0045-7949(86)90010-6

    Article  Google Scholar 

  4. Brown CJ, Yettram AL, Burnett M (1987) Stability of plates with rectangular holes. J Struct Eng 113:1111–1116

    Article  Google Scholar 

  5. Brown CJ (1990) Elastic buckling of perforated plates subjected to concentrated loads. Comput Struct 36:1103–1109. https://doi.org/10.1016/0045-7949(90)90218-Q

    Article  Google Scholar 

  6. Prabhakara DL, Datta PK (1997) Vibration, buckling and parametric instability behaviour of plates with centrally located cutouts subjected to in-plane edge loading (tension or compression). Thin-Walled Struct 27:287–310. https://doi.org/10.1016/S0263-8231(96)00033-X

    Article  Google Scholar 

  7. Shanmugam NE (1997) Openings in thin-walled steel structures. Thin-Walled Struct 28:355–372. https://doi.org/10.1016/s0263-8231(97)00053-0

    Article  Google Scholar 

  8. Shanmugam NE, Thevendran V, Tan YH (1999) Design formula for axially compressed perforated plates. Thin-Walled Struct 34:1–20. https://doi.org/10.1016/S0263-8231(98)00052-4

    Article  Google Scholar 

  9. El-Sawy KM, Nazmy AS (2001) Effect of aspect ratio on the elastic buckling of uniaxially loaded plates with eccentric holes. Thin-Walled Struct 39:983–998. https://doi.org/10.1016/S0263-8231(01)00040-4

    Article  Google Scholar 

  10. Shanmugam NE, Lian VT, Thevendran V (2002) Finite element modelling of plate girders with web openings. Thin-Walled Struct 40:443–464. https://doi.org/10.1016/S0263-8231(02)00008-3

    Article  Google Scholar 

  11. El-Sawy KM, Nazmy AS, Martini MI (2004) Elasto-plastic buckling of perforated plates under uniaxial compression. Thin-Walled Struct 42:1083–1101. https://doi.org/10.1016/j.tws.2004.03.002

    Article  Google Scholar 

  12. Rahai AR, Alinia MM, Kazemi S (2008) Buckling analysis of stepped plates using modified buckling mode shapes. Thin-Walled Struct 46:484–493. https://doi.org/10.1016/j.tws.2007.10.012

    Article  Google Scholar 

  13. Azhari M, Shahidi AR, Saadatpour MM (2005) Local and post local buckling of stepped and perforated thin plates. Appl Math Model 29:633–652. https://doi.org/10.1016/j.apm.2004.10.004

    Article  MATH  Google Scholar 

  14. Loughlan J, Hussain N (2016) The post-buckled failure of steel plate shear webs with centrally located circular cut-outs. Structures 8:252–263. https://doi.org/10.1016/j.istruc.2016.05.010

    Article  Google Scholar 

  15. Saad-Eldeen S, Garbatov Y, Guedes Soares C (2016) Experimental investigation on the residual strength of thin steel plates with a central elliptic opening and locked cracks. Ocean Eng 115:19–29. https://doi.org/10.1016/j.oceaneng.2016.01.030

    Article  Google Scholar 

  16. Saad-Eldeen S, Garbatov Y, Guedes Soares C (2018) Structural capacity of plates and stiffened panels of different materials with opening. Ocean Eng 167:45–54. https://doi.org/10.1016/j.oceaneng.2018.08.013

    Article  Google Scholar 

  17. Saad-Eldeen S, Garbatov Y, Guedes Soares C (2019) Buckling collapse tests of deteriorated steel plates with multiple circular openings. Ocean Eng 172:523–530. https://doi.org/10.1016/j.oceaneng.2018.11.051

    Article  Google Scholar 

  18. Davies JM, Leach P, Taylor A (1997) The design of perforated cold-formed steel sections subject to axial load and bending. Thin Walled Struct 29:141–157

    Article  Google Scholar 

  19. Moen CD, Schafer BW (2008) Experiments on cold-formed steel columns with holes. Thin-Walled Struct 46:1164–1182. https://doi.org/10.1016/j.tws.2008.01.021

    Article  Google Scholar 

  20. Singh TG, Singh KD (2018) Experimental investigation on performance of perforated cold–formed steel tubular stub columns. Thin-Walled Struct 131:107–121. https://doi.org/10.1016/j.tws.2018.06.042

    Article  Google Scholar 

  21. Gusella F, Lavacchini G, Orlando M, Spinelli P (2019) Axial response of cold-formed steel bracing members with holes. J Constr Steel Res 161:70–85. https://doi.org/10.1016/j.jcsr.2019.06.015

    Article  Google Scholar 

  22. Devi SV, Singh TG, Singh KD (2019) Cold-formed steel square hollow members with circular perforations subjected to torsion. J Constr Steel Res 162:105730. https://doi.org/10.1016/j.jcsr.2019.105730

    Article  Google Scholar 

  23. Uzzaman A, Lim JBP, Nash D, Young B (2017) Effects of edge-stiffened circular holes on the web crippling strength of cold-formed steel channel sections under one-flange loading conditions. Eng Struct 139:96–107. https://doi.org/10.1016/j.engstruct.2017.02.042

    Article  Google Scholar 

  24. Zhao J, Sun K, Yu C, Wang J (2019) Tests and direct strength design on cold-formed steel channel beams with web holes. Eng Struct 184:434–446. https://doi.org/10.1016/j.engstruct.2019.01.062

    Article  Google Scholar 

  25. Yuan WB, Yu NT, Li LY (2017) Distortional buckling of perforated cold-formed steel channel-section beams with circular holes in web. Int J Mech Sci 126:255–260. https://doi.org/10.1016/j.ijmecsci.2017.04.001

    Article  Google Scholar 

  26. Yu NT, B K, WB Y et al (2019) An analytical solution of distortional buckling resistance of cold-formed steel channel-section beams with web openings. Thin-Walled Struct 135:446–452. https://doi.org/10.1016/j.tws.2018.11.012

    Article  Google Scholar 

  27. Cheung YK (1968) The finite strip method in the analysis of elastic plates with two opposite simply supported ends. ICE Publishing, London

    Google Scholar 

  28. Shahmohammadi MA, Azhari M, Saadatpour MM, Sarrami-Foroushani S (2019) Stability of laminated composite and sandwich FGM shells using a novel isogeometric finite strip method. Eng Comput 37(4):1369–1395. https://doi.org/10.1108/EC-06-2019-0246

    Article  MATH  Google Scholar 

  29. Ovesy H, Zia-Dehkordi E, Ghannadpour SA (2015) High accuracy post-buckling analysis of moderately thick composite plates using an exact finite strip. Compos Struct 174:104–112. https://doi.org/10.1016/j.compstruct.2012.08.009

    Article  Google Scholar 

  30. Bradford MA, Azhari M (1995) Buckling of plates with different end conditions using the finite strip method. Comput Struct 56:75–83. https://doi.org/10.1016/0045-7949(94)00528-B

    Article  MATH  Google Scholar 

  31. Zhen L, Qiao P, Zhong J et al (2017) Design of steel pipe-jacking based on buckling analysis by finite strip method. Eng Struct 132:139–151. https://doi.org/10.1016/j.engstruct.2016.11.016

    Article  Google Scholar 

  32. Zamanifar H, Sarrami-Foroushani S, Azhari M (2019) Static and dynamic analysis of corrugated-core sandwich plates using finite strip method. Eng Struct 183:30–51. https://doi.org/10.1016/j.engstruct.2018.12.102

    Article  Google Scholar 

  33. Ovesy HR, Ghannadpour SAM (2011) An exact finite strip for the initial postbuckling analysis of channel section struts. Comput Struct 89:1785–1796. https://doi.org/10.1016/j.compstruc.2010.10.009

    Article  Google Scholar 

  34. Ovesy HR, Ghannadpour SAM (2008) An exact finite strip for the calculation of relative post-buckling stiffness of I-section struts. Structural Engineering and Mechanics 31:181–210. https://doi.org/10.1016/j.ijmecsci.2008.07.010

    Article  MATH  Google Scholar 

  35. Naderian HR, Ronagh HR (2015) Buckling analysis of thin-walled cold-formed steel structural members using complex finite strip method. Thin-Walled Struct 90:74–83. https://doi.org/10.1016/j.tws.2015.01.008

    Article  Google Scholar 

  36. Pham CH, Hancock GJ (2013) Shear buckling of channels using the semi-analytical and spline finite strip methods. J Constr Steel Res 90:42–48. https://doi.org/10.1016/j.jcsr.2013.07.019

    Article  Google Scholar 

  37. Azhari M, Bradford MA (1995) The use of bubble functions for the post-local buckling of plate assemblies by the finite strip method. Int J Numer Meth Eng 38:955–968. https://doi.org/10.1002/nme.1620380606

    Article  MATH  Google Scholar 

  38. Casafont M, Pastor M, Bonada J et al (2012) Linear buckling analysis of perforated steel storage rack columns with the Finite Strip Method. Thin-Walled Struct 61:71–85. https://doi.org/10.1016/j.tws.2012.07.010

    Article  Google Scholar 

  39. Tovar J, Sputo T (2005) Application of direct strength method to axially loaded perforated cold-formed steel studs: distortional and local buckling. Thin-Walled Struct 43:1882–1912. https://doi.org/10.1016/j.tws.2005.08.004

    Article  Google Scholar 

  40. Sputo T, Tovar J (2005) Application of direct strength method to axially loaded perforated cold-formed steel studs: Longwave buckling. Thin-Walled Struct 43:1852–1881. https://doi.org/10.1016/j.tws.2005.08.005

    Article  Google Scholar 

  41. Mousavi H, Azhari M, Saadatpour MM (2019) A novel formulation for static and buckling analysis of plates using coupled element free Galerkin-finite strip (EFG-FS). Appl Math Model 70:264–284. https://doi.org/10.1016/j.apm.2019.01.019

    Article  MathSciNet  MATH  Google Scholar 

  42. Mousavi H, Azhari M, Saadatpour MM, Sarrami-Foroushani S (2019) A coupled improved element free Galerkin-finite strip (IEFG-FS) method for free vibration analysis of plate. Int J Appl Mech Article. https://doi.org/10.1142/S1758825119501035

    Article  Google Scholar 

  43. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256. https://doi.org/10.1002/nme.1620370205

    Article  MathSciNet  MATH  Google Scholar 

  44. Peng M, Li D, Cheng Y (2011) The complex variable element-free Galerkin (CVEFG) method for elasto-plasticity problems. Eng Struct 33:127–135. https://doi.org/10.1016/j.engstruct.2010.09.025

    Article  Google Scholar 

  45. Jaberzadeh E, Azhari M (2015) Local buckling of moderately thick stepped skew viscoelastic composite plates using the element-free Galerkin method. Acta Mech 1025:1011–1025. https://doi.org/10.1007/s00707-014-1232-z

    Article  MathSciNet  MATH  Google Scholar 

  46. Dehghan M, Narimani N (2019) The element-free Galerkin method based on moving least squares and moving Kriging approximations for solving two-dimensional tumor-induced angiogenesis model. Eng Comput. https://doi.org/10.1007/s00366-019-00779-0

    Article  Google Scholar 

  47. Davoudi-Kia A, Fallah N (2018) Comparison of enriched meshless finite volume and element free Galerkin methods for the analysis of heterogeneous media. Eng Comput 34:787–799. https://doi.org/10.1007/s00366-017-0573-3

    Article  Google Scholar 

  48. Peng LX, Kitipornchai S, Liew KM (2005) Analysis of rectangular stiffened plates under uniform lateral load based on FSDT and element-free Galerkin method. Int J Mech Sci 47:251–276. https://doi.org/10.1016/j.ijmecsci.2004.12.006

    Article  MATH  Google Scholar 

  49. Zhang Z, Li D-M, Cheng Y-M, Liew KM (2012) The improved element-free Galerkin method for three-dimensional wave equation. Acta Mech Sin/Lixue Xuebao 28:808–818. https://doi.org/10.1007/s10409-012-0083-x

    Article  MathSciNet  MATH  Google Scholar 

  50. Li X, Chen H, Wang Y (2015) Error analysis in Sobolev spaces for the improved moving least-square approximation and the improved element-free Galerkin method. Appl Math Comput 262:56–78. https://doi.org/10.1016/j.amc.2015.04.002

    Article  MathSciNet  MATH  Google Scholar 

  51. Beslin O, Nicolas J (1997) A hierarchical functions set for predicting very high order plate bending modes with any boundary conditions. J Sound Vib 202:633–655. https://doi.org/10.1006/jsvi.1996.0797

    Article  Google Scholar 

  52. ABAQUS Version 6.14-1 (2014) Providence, RI, USA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Azhari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The polynomial interpolation functions are defined as

$$\begin{gathered} f_{11} = \frac{1}{2}(1 - \eta ), \, f_{12} = \frac{1}{2}(1 + \eta ), \hfill \\ f_{21} = (1 - 3\eta^{2} + 2\eta^{2} ), \, f_{22} = b(\eta - 2\eta^{2} + \eta^{3} ), \hfill \\ f_{31} = 3\eta^{2} - 2\eta^{3} , \, f_{32} = b( - \eta^{2} + \eta^{3} ), \hfill \\ \end{gathered}$$
(32)

n which \(\eta = \frac{y}{b}\).

\({\mathbf{K}}_{{_{{\rm{(IEFG)}}} }}\) is

$$\left[ {{\mathbf{K}}_{{_{{\rm{(IEFG}}} )}} } \right]_{{ij}} = \int\limits_{{{\Omega }_{1} }} {\left( {{\mathbf{B}}_{{_{{\rm{(IEFG)}}} }}^{{}} } \right)_{i}^{T} {\mathbf{D}}\left( {{\mathbf{B}}_{{_{{\rm{(IEFG)}}} }}^{{}} } \right)_{j}^{{}} {{\rm d}\Omega }}$$
(33)

where

$$\left( {{\mathbf{B}}_{{_{{\rm{(IEFG}}} }}^{{}} } \right)_{i} = \left[ {\begin{array}{*{20}c} {\frac{{\partial \phi_{i} }}{\partial x}} & 0 & { - z\frac{{\partial^{2} \phi_{i} }}{{\partial x^{2} }}} \\ 0 & {\frac{{\partial \phi_{i} }}{\partial y}} & { - z\frac{{\partial^{2} \phi_{i} }}{{\partial y^{2} }}} \\ {\frac{{\partial \phi_{i} }}{\partial y}} & {\frac{{\partial \phi_{i} }}{\partial x}} & { - 2z\frac{{\partial^{2} \phi_{i} }}{\partial x\partial y}} \\ \end{array} } \right]$$
(34)

and

$${\mathbf{D = }}\frac{E}{{\rm{(1 - }\nu^{2} \rm{)}}}\left[ {\begin{array}{*{20}c} 1 & \nu & \rm{0} \\ \nu & 1 & \rm{0} \\ \rm{0} & \rm{0} & {{{(\rm{1 - }\nu )} \mathord{\left/ {\vphantom {{(\rm{1 - }\nu )} 2}} \right. \kern-\nulldelimiterspace} 2}} \\ \end{array} } \right],$$
(35)

in which E and ν are Young's modulus and Poisson's ratio, respectively.

$$\left[ {{\mathbf{G}}_{{\rm{(IEFG)}}} } \right]_{ij} = - \int\limits_{{\Gamma _{u}^{(1)} }} {\rm{(}{\mathbf{L}}_{b} {{\varvec{\Phi}}}_{{_{i} }}^{{}} \rm{)}_{{_{{}} }}^{T} {\mathbf{N}}_{{_{j} }}^{{}} {\rm{d}\Gamma }} ,$$
(36)
$$\left[ {{\mathbf{H}}_{{\rm{(IEFG)}}}^{{}} } \right]_{ij} = \int\limits_{{\Gamma _{{_{I} }}^{{}} }} {\rm{(}{\mathbf{L}}_{I} {{\varvec{\Phi}}}_{{_{i} }}^{{}} \rm{)}_{{_{{}} }}^{T} {\mathbf{N}}_{{_{j} }}^{{}} {\rm{d}\Gamma }} ,$$
(37)

where

$${{\varvec{\Phi}}}_{{_{i} }}^{{}} = \left[ {\begin{array}{*{20}c} {\phi_{i} } & 0 & 0 \\ 0 & {\phi_{i} } & 0 \\ 0 & 0 & {\phi_{i} } \\ \end{array} } \right],$$
(38)

and the interpolation function \({\mathbf{N}}_{{_{j} }}^{{}}\) in the jth node is expressed as:

$${\mathbf{N}}_{{_{j} }}^{{}} = \left[ {\begin{array}{*{20}c} {{\rm N}_{{_{j} }}^{{}} } & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {{\rm N}_{{_{j} }}^{{}} } & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {{\rm N}_{{_{j} }}^{{}} } & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {{\rm N}_{{_{j} }}^{{}} } \\ \end{array} } \right].$$
(39)

\({\mathbf{K}}_{{\rm{(FS)}}}^{{}}\) for the strip e (Fig. 3a) is calculated as

$${\mathbf{K}}_{{\rm{(FS)}}}^{e} = \left[ {\begin{array}{*{20}c} {\left[ {{\mathbf{K}}_{{\rm{(FS)}}}^{e} } \right]_{11} } & \cdots & {\left[ {{\mathbf{K}}_{{\rm{(FS)}}}^{e} } \right]_{1r} } \\ \vdots & \ddots & \vdots \\ {\left[ {{\mathbf{K}}_{{\rm{(FS)}}}^{e} } \right]_{r1} } & \cdots & {\left[ {{\mathbf{K}}_{{\rm{(FS)}}}^{e} } \right]_{rr} } \\ \end{array} } \right],$$
(40)

where

$$\left[ {{\mathbf{K}}_{{\rm{(FS)}}}^{e} } \right]_{pq} = \int\limits_{{\Omega _{e} }} {\left( {{\mathbf{RB}}_{{p_{{\rm{(FS)}}} }}^{e} } \right)^{T} {\mathbf{D}}\left( {{\mathbf{RB}}_{{q_{{\rm{(FS)}}} }}^{e} } \right){\rm{d}\Omega }} ,$$
(41)

in which \({\mathbf{B}}_{{n_{{\rm{(FS)}}} }}^{e}\) is

$${\mathbf{B}}_{{n_{{\rm{(FS)}}} }}^{e} = {\mathbf{L}}_{{\mathbf{d}}}^{{}} {\mathbf{N}}_{{n_{{\rm{(FS)}}} }}^{e} , \, n\rm{ = }p\rm{,}q$$
(42)

where

$${\mathbf{L}}_{{\mathbf{d}}}^{{}} = \left[ {\begin{array}{*{20}c} {\frac{\partial }{\partial x}} & 0 & { - z\frac{{\partial^{2} }}{{\partial x^{2} }}} \\ 0 & {\frac{\partial }{\partial y}} & { - z\frac{{\partial^{2} }}{{\partial y^{2} }}} \\ {\frac{\partial }{\partial y}} & {\frac{\partial }{\partial x}} & { - 2z\frac{{\partial^{2} }}{\partial x\partial y}} \\ \end{array} } \right]$$
(43)

and

$${\mathbf{N}}_{{n_{{\rm{(FS)}}} }}^{e} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {f_{11} S_{n} } \\ \rm{0} \\ \rm{0} \\ \end{array} } & {\begin{array}{*{20}c} \rm{0} \\ {f_{11} S_{n} } \\ \rm{0} \\ \end{array} } & {\begin{array}{*{20}c} \rm{0} \\ \rm{0} \\ {f_{21} S_{n} } \\ \end{array} } & {\begin{array}{*{20}c} \rm{0} \\ \rm{0} \\ {f_{31} S_{n} } \\ \end{array} } \\ \end{array} } & {\begin{array}{*{20}c} {\begin{array}{*{20}c} {f_{12} S_{n} } \\ \rm{0} \\ \rm{0} \\ \end{array} } & {\begin{array}{*{20}c} \rm{0} \\ {f_{12} S_{n} } \\ \rm{0} \\ \end{array} } & {\begin{array}{*{20}c} \rm{0} \\ \rm{0} \\ {f_{22} S_{n} } \\ \end{array} } & {\begin{array}{*{20}c} \rm{0} \\ \rm{0} \\ {f_{32} S_{n} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right].$$
(44)

\({\mathbf{H}}_{{\rm{(FS)}}}^{{}}\) is calculated as

$${\mathbf{H}}_{{\rm{(FS)}}}^{{}} = \left[ {\begin{array}{*{20}c} {\left[ {{\mathbf{H}}_{{\rm{(FS)}}}^{{}} } \right]_{11} } & \cdots & {\left[ {{\mathbf{H}}_{{\rm{(FS)}}}^{{}} } \right]_{{1n_{\gamma } }} } \\ \vdots & \ddots & \vdots \\ {\left[ {{\mathbf{H}}_{{\rm{(FS)}}}^{{}} } \right]_{r1} } & \cdots & {\left[ {{\mathbf{H}}_{{\rm{(FS)}}}^{{}} } \right]_{{rn_{\gamma } }} } \\ \end{array} } \right],$$
(45)

in which \(\left[ {{\mathbf{H}}_{{\rm{(FS)}}}^{{}} } \right]_{nj}\) is obtained from

$$\left[ {{\mathbf{H}}_{{\rm{(FS)}}}^{{}} } \right]_{nj} = \int\limits_{{\Gamma _{I} }} {\rm{(}{\mathbf{N}}_{{I_{{(\rm{FS})}} }}^{{}} \rm{)}_{n} {\mathbf{N}}_{{_{j} }}^{{}} {\rm{d}\Gamma }} ,$$
(46)

where

$$\rm{(}{\mathbf{N}}_{{I_{{(\rm{FS})}} }}^{{}} \rm{)}_{n} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {f_{11} S_{n} } \\ \rm{0} \\ \rm{0} \\ \end{array} } & {\begin{array}{*{20}c} \rm{0} \\ {f_{22} S_{n} } \\ \rm{0} \\ \end{array} } & {\begin{array}{*{20}c} \rm{0} \\ \rm{0} \\ {f_{31} S_{n} } \\ \end{array} } & {\begin{array}{*{20}c} \rm{0} \\ \rm{0} \\ {f_{32} S_{n} } \\ \end{array} } \\ \end{array} } \right].$$
(47)

Similar to \({\mathbf{K}}_{{\rm{(FS)}}}^{e}\) (A.9), \({\mathbf{K}}_{\rm{0}}^{e}\) and \({\mathbf{K}}_{a}^{e}\) can be defined for the strip e in which their components \(\left[ {{\mathbf{K}}_{\rm{0}}^{e} } \right]_{pq}\) and \(\left[ {{\mathbf{K}}_{a}^{e} } \right]_{pq}\) are, respectively, obtained as

$$\left[ {{\mathbf{K}}_{\rm{0}}^{e} } \right]_{pq} = \int\limits_{{\Gamma _{{\rm{FS}_{\rm{1}} }} }} {\left( {{\mathbf{R}}\rm{(}{\mathbf{L}}_{k}^{{}} {\mathbf{N}}_{{p_{{\rm{(FS)}}} }}^{e} \rm{)}^{T} } \right){\mathbf{k}}_{{\mathbf{0}}} \left( {{\mathbf{R}}\rm{(}{\mathbf{L}}_{k}^{{}} {\mathbf{N}}_{{q_{{\rm{(FS)}}} }}^{e} \rm{)}} \right){\rm{d}\Gamma }} ,$$
(48)
$$\left[ {{\mathbf{K}}_{a}^{e} } \right]_{pq} = \int\limits_{{\Gamma _{{\rm{FS}_{\rm{2}} }} }} {\left( {{\mathbf{R}}\rm{(}{\mathbf{L}}_{k}^{{}} {\mathbf{N}}_{{p_{{\rm{(FS)}}} }}^{e} \rm{)}} \right)^{T} {\mathbf{k}}_{a} \left( {{\mathbf{R}}\rm{(}{\mathbf{L}}_{k}^{{}} {\mathbf{N}}_{{q_{{\rm{(FS)}}} }}^{e} \rm{)}} \right){\rm{d}\Gamma }} ,$$
(49)

where

$${\mathbf{L}}_{k} = \left[ {\begin{array}{*{20}c} {{\tilde{\mathbf{L}}}_{k} } & {\mathbf{0}} \\ {\mathbf{0}} & {{\tilde{\mathbf{L}}}_{k} } \\ \end{array} } \right], \, {\tilde{\mathbf{L}}}_{k} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} \rm{1} \\ \rm{0} \\ \rm{0} \\ \rm{0} \\ \end{array} } & {\begin{array}{*{20}c} \rm{0} \\ \rm{1} \\ \rm{0} \\ \rm{0} \\ \end{array} } & {\begin{array}{*{20}c} \rm{0} \\ \rm{0} \\ \rm{1} \\ {{\partial \mathord{\left/ {\vphantom {\partial {\partial x}}} \right. \kern-\nulldelimiterspace} {\partial x}}} \\ \end{array} } \\ \end{array} } \right] \, {.}$$
(50)

\({\mathbf{K}}_{{\rm{(IEFG)}}}^{g}\) is

$${\mathbf{K}}_{{\rm{(IEFG)}}}^{g} = \int\limits_{{\Omega _{1} }} {{\mathbf{L}}_{{N_{{\rm{(IEFG)}}} }}^{T} S_{N} {\mathbf{L}}_{{N_{{\rm{(IEFG)}}} }}^{{}} {\rm{d}\Omega }} ,$$
(51)

where

$${\mathbf{L}}_{{N_{{\rm{(IEFG)}}} }}^{T} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\frac{{\partial \phi_{i} }}{\partial x}} & {\frac{{\partial \phi_{i} }}{\partial y}} \\ \end{array} } & {\begin{array}{*{20}c} \rm{0} & \rm{0} \\ \end{array} } & {\begin{array}{*{20}c} \rm{0} & \rm{0} \\ \end{array} } \\ {\begin{array}{*{20}c} \rm{0} & \rm{0} \\ \end{array} } & {\begin{array}{*{20}c} {\frac{{\partial \phi_{i} }}{\partial x}} & {\frac{{\partial \phi_{i} }}{\partial y}} \\ \end{array} } & {\begin{array}{*{20}c} \rm{0} & \rm{0} \\ \end{array} } \\ {\begin{array}{*{20}c} \rm{0} & \rm{0} \\ \end{array} } & {\begin{array}{*{20}c} \rm{0} & \rm{0} \\ \end{array} } & {\begin{array}{*{20}c} {\frac{{\partial \phi_{i} }}{\partial x}} & {\frac{{\partial \phi_{i} }}{\partial y}} \\ \end{array} } \\ \end{array} } \right],$$
(52)

and

$$S_{N} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {s_{x} } & {s_{xy} } \\ {s_{xy} } & {s_{y} } \\ \end{array} } & {\begin{array}{*{20}c} \rm{0} & \rm{0} \\ \rm{0} & \rm{0} \\ \end{array} } & {\begin{array}{*{20}c} \rm{0} & \rm{0} \\ \rm{0} & \rm{0} \\ \end{array} } \\ {\begin{array}{*{20}c} \rm{0} & \rm{0} \\ \rm{0} & \rm{0} \\ \end{array} } & {\begin{array}{*{20}c} {s_{x} } & {s_{xy} } \\ {s_{xy} } & {s_{y} } \\ \end{array} } & {\begin{array}{*{20}c} \rm{0} & \rm{0} \\ \rm{0} & \rm{0} \\ \end{array} } \\ {\begin{array}{*{20}c} \rm{0} & \rm{0} \\ \rm{0} & \rm{0} \\ \end{array} } & {\begin{array}{*{20}c} \rm{0} & \rm{0} \\ \rm{0} & \rm{0} \\ \end{array} } & {\begin{array}{*{20}c} {s_{x} } & {s_{xy} } \\ {s_{xy} } & {s_{y} } \\ \end{array} } \\ \end{array} } \right].$$
(53)

\({\mathbf{K}}_{{\rm{(FS)}}}^{ge}\) is the stability stiffness matrix for the strip e, and is defined similar to \({\mathbf{K}}_{{\rm{(FS)}}}^{e}\) (40). Therefore, \(\left[ {{\mathbf{K}}_{{\rm{(FS)}}}^{ge} } \right]_{pq}\) is

$$\left[ {{\mathbf{K}}_{{\rm{(FS)}}}^{ge} } \right]_{pq} = \int\limits_{{\Omega _{e} }} {\left( {{\mathbf{L}}_{{N_{{\rm{(FS)}}} }}^{T} } \right)_{p} S_{N} \left( {{\mathbf{L}}_{{N_{{\rm{(FS)}}} }}^{{}} } \right)_{q} {{\rm{d}}\Omega }} ,$$
(54)

where

$$\begin{gathered} \left( {{\mathbf{L}}_{{N_{{\rm{(FS)}}} }}^{{}} } \right)_{n} = \left[ {\begin{array}{*{20}c} {f_{11} \frac{{\partial S_{n} (x)}}{\partial x}} & \rm{0} & \rm{0} & \rm{0} \\ {\frac{{\partial f_{11} }}{\partial y}S_{n} (x)} & \rm{0} & \rm{0} & \rm{0} \\ {\begin{array}{*{20}c} \rm{0} \\ \rm{0} \\ \end{array} } & {\begin{array}{*{20}c} {f_{11} \frac{{\partial S_{n} (x)}}{\partial x}} \\ {\frac{{\partial f_{11} }}{\partial y}S_{n} (x)} \\ \end{array} } & {\begin{array}{*{20}c} \rm{0} \\ \rm{0} \\ \end{array} } & {\begin{array}{*{20}c} \rm{0} \\ \rm{0} \\ \end{array} } \\ {\begin{array}{*{20}c} \rm{0} \\ \rm{0} \\ \end{array} } & {\begin{array}{*{20}c} \rm{0} \\ \rm{0} \\ \end{array} } & {\begin{array}{*{20}c} {f_{21} \frac{{\partial S_{n} (x)}}{\partial x}} \\ {\frac{{\partial f_{21} }}{\partial y}S_{n} (x)} \\ \end{array} } & {\begin{array}{*{20}c} {f_{31} \frac{{\partial S_{n} (x)}}{\partial x}} \\ {\frac{{\partial f_{31} }}{\partial y}S_{n} (x)} \\ \end{array} } \\ \end{array} } \right. \hfill \\ \, \left. {\begin{array}{*{20}c} {f_{12} \frac{{\partial S_{n} (x)}}{\partial x}} & \rm{0} & \rm{0} & \rm{0} \\ {\frac{{\partial f_{12} }}{\partial y}S_{n} (x)} & \rm{0} & \rm{0} & \rm{0} \\ {\begin{array}{*{20}c} \rm{0} \\ \rm{0} \\ \end{array} } & {\begin{array}{*{20}c} {f_{12} \frac{{\partial S_{n} (x)}}{\partial x}} \\ {\frac{{\partial f_{12} }}{\partial y}S_{n} (x)} \\ \end{array} } & {\begin{array}{*{20}c} \rm{0} \\ \rm{0} \\ \end{array} } & {\begin{array}{*{20}c} \rm{0} \\ \rm{0} \\ \end{array} } \\ {\begin{array}{*{20}c} \rm{0} \\ \rm{0} \\ \end{array} } & {\begin{array}{*{20}c} \rm{0} \\ \rm{0} \\ \end{array} } & {\begin{array}{*{20}c} {f_{22} \frac{{\partial S_{n} (x)}}{\partial x}} \\ {\frac{{\partial \partial f_{22} }}{\partial y}S_{n} (x)} \\ \end{array} } & {\begin{array}{*{20}c} {f_{32} \frac{{\partial S_{n} (x)}}{\partial x}} \\ {\frac{{\partial f_{32} }}{\partial y}S_{n} (x)} \\ \end{array} } \\ \end{array} } \right] n\rm{ = }p\rm{,}q. \hfill \\ \end{gathered}$$
(55)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, H., Azhari, M., Saadatpour, M.M. et al. Application of improved element-free Galerkin combining with finite strip method for buckling analysis of channel-section beams with openings. Engineering with Computers 38, 739–755 (2022). https://doi.org/10.1007/s00366-020-01087-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01087-8

Keywords

Navigation