Skip to main content
Log in

On the asymmetric thermal stability of FGM annular plates reinforced with graphene nanoplatelets

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The semi-analytical procedure combined with the trigonometric expansion and generalized differential quadrature (TE-GDQ) technique is developed to examine the asymmetric stability of functionally graded graphene platelet reinforced nanocomposite (FG-GPLRC) annular plates subjected to thermal loading. Uniform distribution and random orientation are supposed for GPLs in all laminas. The volume fraction between plies changes according to three types of functionally graded media. The equivalent Young’s modulus of the plate is determined by Halpin–Tsai micromechanical process. Then, the governing equations are extracted utilizing the Riessner plate theory as called FSDT and von-Kármán kind of nonlinear geometrical relation. After calculating the pre-buckling path and the linearizing process, the stability relations can be derived using the adjacent equilibrium standard. Then, the TE-GDQ procedure is applied to the stability equations. Additionally, the obtained eigenvalue theme is solved; after that, the temperature variation for thermal buckling can be calculated. To illustrate the efficiency and accuracy of the exploited formulation and methods, a validation study is conducted. After validity, various parametric results are demonstrated to analyze the influence of the GPL volume fraction, type of reinforcement, and geometrical factors on the structure stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ebrahimi F, Dabbagh A (2019) A comprehensive review on modeling of nanocomposite materials and structures. J Comput Appl Mech 50(1):197–209

    Google Scholar 

  2. Zandiatashbar A, Picu RC, Koratkar N (2012) Mechanical behavior of epoxy-graphene platelets nanocomposites. J Eng Mater Technol Trans ASME 134(3):31011-1–31011-6

  3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Google Scholar 

  4. Reddy CD, Rajendran S, Liew KM (2006) Equilibrium configuration and continuum elastic properties of finite sized graphene. Nanotechnology 17:864–870

    Google Scholar 

  5. Scarpa F, Adhikari S, Phani AS (2009) Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 20:065709

    Google Scholar 

  6. Cadelano E, Palla PL, Giordano S, Colombo L (2009) Nonlinear elasticity of monolayer graphene. Phys Rev Lett 102:235502

    Google Scholar 

  7. Ni Z, Bu H, Zou M, Yi H, Bi K, Chen Y (2010) Anisotropic mechanical properties of graphene sheets from molecular dynamics. Phys B 405:1301–1306

    Google Scholar 

  8. Zhang YY, Wang CM, Cheng Y, Xiang Y (2011) Mechanical properties of bilayer graphene sheets coupled by sp3 bonding. Carbon 49:4511–4517

    Google Scholar 

  9. Yang J, Wu H, Kitipornchai S (2017) Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos Struct 161:111–118

    Google Scholar 

  10. Helong W, Yang J, Kitipornchai S (2017) Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment. Compos Struct 162:244–254

    Google Scholar 

  11. Kitipornchai S, Chen D, Yang J (2017) Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Mater Des 116:656–665

    Google Scholar 

  12. Song M, Chen L, Yang J, Zhu W, Kitipornchai S (2019) Thermal buckling and postbuckling of edge-cracked functionally graded multilayer graphene nanocomposite beams on an elastic foundation. Int J Mech Sci 161:105040

    Google Scholar 

  13. Yang Z, Yang J, Liu A, Fu J (2018) Nonlinear in-plane instability of functionally graded multilayer graphene reinforced composite shallow arches. Compos Struct 204:301–312

    Google Scholar 

  14. Huang Y, Yang Z, Liu A, Fu J (2018) Nonlinear buckling analysis of functionally graded graphene reinforced composite shallow arches with elastic rotational constraints under uniform radial load. Materials 11(6):910

    Google Scholar 

  15. Yang Z, Huang Y, Liu A, Fu J, Wu D (2019) Nonlinear in-plane buckling of fixed shallow functionally graded graphene reinforced composite arches subjected to mechanical and thermal loading. Appl Math Model 70:315–327

    MathSciNet  MATH  Google Scholar 

  16. Polit O, Anant C, Anirudh B, Ganapathi M (2019) Functionally graded graphene reinforced porous nanocomposite curved beams: bending and elastic stability using a higher-order model with thickness stretch effect. Compos B Eng 166:310–327

    Google Scholar 

  17. Zhao S, Yang Z, Kitipornchai S, Yang J (2020) Dynamic instability of functionally graded porous arches reinforced by graphene platelets. Thin Walled Struct 147:106491

    Google Scholar 

  18. Song M, Yang J, Kitipornchai S, Zhu W (2017) Buckling and postbuckling of biaxially compressed functionally graded multilayer graphene nanoplatelet-reinforced polymer composite plates. Int J Mech Sci 131:345–355

    Google Scholar 

  19. Wu H, Kitipornchai S, Yang J (2017) Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates. Mater Des 132:430–441

    Google Scholar 

  20. Song M, Yang J, Kitipornchai S (2018) Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos B Eng 134:106–113

    Google Scholar 

  21. Yang J, Dong J, Kitipornchai S (2019) Unilateral and bilateral buckling of functionally graded corrugated thin plates reinforced with graphene nanoplatelets. Compos Struct 209:789–801

    Google Scholar 

  22. Li Q, Wu D, Chen X, Liu L, Yu Y, Gao W (2018) Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler-Pasternak elastic foundation. Int J Mech Sci 148:596–610

    Google Scholar 

  23. Gholami R, Ansari R (2019) Nonlinear stability and vibration of pre/post-buckled multilayer FG-GPLRPC rectangular plates. Appl Math Model 65:627–660

    MathSciNet  MATH  Google Scholar 

  24. Yang J, Chen D, Kitipornchai S (2018) Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Compos Struct 193:281–294

    Google Scholar 

  25. Kiani Y, Mirzaei M (2019) Isogeometric thermal postbuckling of FG-GPLRC laminated plates. Steel Compos Struct 32(6):821–832

    Google Scholar 

  26. Kiani Y (2020) NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates. J Therm Stress 43:90–108

    Google Scholar 

  27. Javani M, Kiani Y, Eslami MR (2020) Thermal buckling of FG graphene platelet reinforced composite annular sector plates. Thin Walled Struct 148:106589

    Google Scholar 

  28. Allahkarami F (2020) Dynamic buckling of functionally graded multilayer graphene nanocomposite annular plate under different boundary conditions in thermal environment. Eng Comput. https://doi.org/10.1007/s00366-020-01169-7

    Article  Google Scholar 

  29. Al-Furjan MSH, Safarpour H, Habibi M, Safarpour M, Tounsi A (2020) A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method. Eng Comput. https://doi.org/10.1007/s00366-020-01088-7

    Article  Google Scholar 

  30. Wang Y, Feng C, Zhao Z, Yang J (2018) Eigenvalue buckling of functionally graded cylindrical shells reinforced with graphene platelets (GPL). Compos Struct 202:38–46

    Google Scholar 

  31. Wang Y, Feng C, Zhao Z, Yang J (2018) Buckling of graphene platelet reinforced composite cylindrical shell with cutout. I. Int J Struct Stab Dyn 18:1850040

    Google Scholar 

  32. Wang Y, Feng C, Zhao Z, Lu F, Yang J (2018) Torsional buckling of graphene platelets (GPLs) reinforced functionally graded cylindrical shell with cutout. Compos Struct 197:72–97

    Google Scholar 

  33. Liu D, Kitiporchai S, Chen W, Yang J (2018) Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell. Compos Struct 189:560–569

    Google Scholar 

  34. Zhou Z, Ni Y, Tong Z, Zhu S, Sun J (2019) Accurate nonlinear buckling analysis of functionally graded porous graphene platelet reinforced composite cylindrical shells. Int J Mech Sci 151:537–550

    Google Scholar 

  35. Sun J, Ni Y, Gao H, Zhu S, Tong Z, Zhou Z (2019) Torsional buckling of functionally graded multilayer graphene nanoplatelet-reinforced cylindrical shells. Int J Struct Stab Dyn 20(1):2050005. https://doi.org/10.1142/S0219455420500054

    Article  MathSciNet  Google Scholar 

  36. Haboussi M, Sankar A, Ganapathi M (2019) Nonlinear axisymmetric dynamic buckling of functionally graded graphene reinforced porous nanocomposite spherical caps. Mech Adv Mater Struct 28(2):127–140

    Google Scholar 

  37. Mahani RB, Eyvazian A, Musharavati F, Sebaey TA, Talebizadehsardari P (2020) Thermal buckling of laminated Nano-Composite conical shell reinforced with graphene platelets. Thin Walled Struct 155:106913

    Google Scholar 

  38. Ansari R, Torabi J, Hasrati E (2020) Postbuckling analysis of axially-loaded functionally graded GPL-reinforced composite conical shells. Thin Walled Struct 148:106594

    Google Scholar 

  39. Mishra BP, Barik M (2019) NURBS-augmented finite element method for stability analysis of arbitrary thin plates. Engineering with Computers 35(2):351–362

    Google Scholar 

  40. Civalek Ö, Avcar M (2020) Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method. Eng Comput. https://doi.org/10.1007/s00366-020-01168-8

    Article  Google Scholar 

  41. Jalaei MH, Civalek Ö (2019) On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam. Int J Eng Sci 143:14–32

    MathSciNet  MATH  Google Scholar 

  42. Akgöz B, Civalek Ö (2015) A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mech 226(7):2277–2294

    MathSciNet  MATH  Google Scholar 

  43. Kiani Y, Eslami MR (2013) An exact solution for thermal buckling of annular plate on an elastic medium. Compos B 45(1):101–110

    Google Scholar 

  44. Li SR, Chang-jun C (1991) Thermal-buckling of thin annular plates under multiple loads. Appl Math Mech 12(3):301–308

    MATH  Google Scholar 

  45. Bagheri H, Kiani Y, Eslami MR (2018) Asymmetric thermal buckling of temperature dependent annular FGM plates on a partial elastic foundation. Comput Math Appl 75(5):1566–1581

    MathSciNet  MATH  Google Scholar 

  46. Bagheri H, Kiani Y, Eslami MR (2017) Asymmetric thermal buckling of annular plates on a partial elastic foundation. J Therm Stress 40(8):1015–1029

    MATH  Google Scholar 

  47. Bagheri H, Kiani Y, Eslami MR (2017) Asymmetric thermo-inertial buckling of annular plates. Acta Mech 228(4):1493–1509

    MathSciNet  MATH  Google Scholar 

  48. Ghiasian SE, Kiani Y, Sadighi M, Eslami MR (2014) Thermal buckling of shear deformable temperature dependent circular/annular FGM plates. Int J Mech Sci 81:137–148

    Google Scholar 

  49. Chen H, Song H, Li Y, Safarpour M (2020) Hygro-thermal buckling analysis of polymer-CNT-fiber-laminated nanocomposite disk under uniform lateral pressure with the aid of GDQM. Eng Comput. https://doi.org/10.1007/s00366-020-01102-y

    Article  Google Scholar 

  50. Karami B, Shahsavari D, Ordookhani A, Gheisari P, Li L, Eyvazian A (2020) Dynamics of graphene-nanoplatelets reinforced composite nanoplates including different boundary conditions. Steel Compos Struct 36(6):689–702

    Google Scholar 

  51. Rissanou A, Power A, Harmandaris V (2015) Structural and dynamical properties of polyethylene/graphene nanocomposites through molecular dynamics simulations. Polymers 7(3):390–417

    Google Scholar 

  52. Affdl JH, Kardos JL (1976) The Halpin–Tsai equations: a review. Polym Eng Sci 16(5):344–352

    Google Scholar 

  53. Eyvazian A, Musharavati F, Talebizadehsardari P, Sebaey TA (2020) Free vibration of FG-GPLRC spherical shell on two parameter elastic foundation. Steel Compos Struct 36(6):711–727

    Google Scholar 

  54. Eyvazian A, Musharavati F, Tarlochan F, Pasharavesh A, Rajak DK, Husain MB, Tran TN (2020) Free vibration of FG-GPLRC conical panel on elastic foundation. Struct Eng Mech 75(1):1–18

    Google Scholar 

  55. Li Y, Li S, Guo K, Fang X, Habibi M (2020) On the modeling of bending responses of graphene-reinforced higher order annular plate via two-dimensional continuum mechanics approach. Eng Comput. https://doi.org/10.1007/s00366-020-01166-w

    Article  Google Scholar 

  56. Nguyen LB, Thai CH, Nguyen-Xuan H (2016) A generalized unconstrained theory and isogeometric finite element analysis based on Bézier extraction for laminated composite plates. Eng Comput 32(3):457–475

    Google Scholar 

  57. Dastjerdi S, Akgöz B, Civalek Ö (2020) On the effect of viscoelasticity on behavior of gyroscopes. Int J Eng Sci 149:103236

    MathSciNet  MATH  Google Scholar 

  58. Reddy JN (2006) Theory and analysis of elastic plates and shells. CRC Press, Boca Raton

    Google Scholar 

  59. Ebrahimi F, Barati MR, Civalek Ö (2020) Application of Chebyshev–Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures. Eng Comput 36(3):953–964

    Google Scholar 

  60. Javani M, Kiani Y, Eslami MR (2019) Large amplitude thermally induced vibrations of temperature dependent annular FGM plates. Compos B Eng 163:371–383

    Google Scholar 

  61. Wang H, Zhang H, Dousti R, Safarpour H (2021) Dynamic simulation of moderately thick annular system coupled with shape memory alloy and multi-phase nanocomposite face sheets. Eng Comput. https://doi.org/10.1007/s00366-020-01246-x

    Article  Google Scholar 

  62. Ashraf MA, Liu Z, Zhang D, Pham BT (2020) Effects of elastic foundation on the large-amplitude vibration analysis of functionally graded GPL-RC annular sector plates. Eng Comput. https://doi.org/10.1007/s00366-020-01068-x

    Article  Google Scholar 

  63. Tao C, Dai T (2021) Postbuckling of multilayer cylindrical and spherical shell panels reinforced with graphene platelet by isogeometric analysis. Eng Comput. https://doi.org/10.1007/s00366-021-01360-4

    Article  Google Scholar 

  64. Wang CM, Wang CY, Reddy JN (2004) Exact solutions for buckling of structural members. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgements

This research is financially supported by the Ministry of Science and Technology of China (Grant No. 2019YFE0112400), the Taishan Scholar Priority Discipline Talent Group program funded by the Shan Dong Province, the first-class discipline project funded by the Education Department of Shandong Province, Ministry of Science and Higher Education of Poland (Grant No. W/WM-IIM/3/2020), Prince Sultan University support through the Structures and Materials Research Laboratory fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunwei Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Zhang, C., Khan, A. et al. On the asymmetric thermal stability of FGM annular plates reinforced with graphene nanoplatelets. Engineering with Computers 38 (Suppl 5), 4569–4581 (2022). https://doi.org/10.1007/s00366-021-01463-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01463-y

Keywords

Navigation