Skip to main content
Log in

Toward a Meta-Model for Computational Engineering

  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract.

Geometric modeling and finite element analysis have matured in recent decades. Both methods are used extensively in engineering design. However, the link between geometric modeling, physical modeling and finite element analysis is currently cumbersome, error-prone, and ad-hoc. Topological domain modeling provides the missing link. In this paper, we propose a combined topological modeling and finite element modeling method that allows not only topological modeling, but also promotes geometric and physical modeling, by providing a topological base space for the definition of finite element meshes, fields, and the definition and solution of boundary value problems. We call the method the Constructive Topological Domain Method (CTDM). In this method, Primitive Topological Domains (PTDs), each possessing a natural coordinate space, are combined in multiple n-dimensional Cartesian coordinate spaces, called charts, using generalizations of Boolean set operations, to create Constructed Topological Domains (CTDs) capable of acting as the base spaces of fiber bundles. The charts are glued together to create an atlas, within which the CTD is defined. The fiber of the bundle may describe, in addition to geometry, physical fields like density, stress, and temperature. Finite element meshes may be defined upon each of the PTDs from which the CTD is constructed, enabling the definition and solution of boundary value problems, thus avoiding the difficult and messy problem of creating a single finite element mesh to represent the entire CTD. A modified finite element method, to handle the individually meshed PTDs, is described. The boundary conditions may be specified as analytical or as finite element-based fields upon each of the PTDs. The CTDM appears to be a promising approach to robust mathematical and computational modeling of physical objects. Simple examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

ID="A1"Correspondance and offprint requests to: W. Gerstle, Department of Civil Engineering, University of New Mexico, Albuquerque, NM 87131, USA. E-mail: gerstle@unm.edu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerstle, W. Toward a Meta-Model for Computational Engineering. Eng Comput 18, 328–338 (2002). https://doi.org/10.1007/s003660200029

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003660200029