Skip to main content
Log in

Parameterization-free active contour models with topology control

  • Special section: Fourth Israel–Korea Bi-National Conference on Geometric Modeling and Computer Graphics
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present a novel approach for representing and evolving deformable active contours by restricting the movement of the contour vertices to the grid lines of a uniform lattice. This restriction implicitly controls the (re)parameterization of the contour and hence makes it possible to employ parameterization-independent evolution rules. Moreover, the underlying uniform grid makes self-collision detection very efficient. Our contour model is also able to perform topology changes, but – more importantly – it can detect and handle self-collisions at subpixel precision. In applications where topology changes are not appropriate, we generate contours that touch themselves without any gaps or self-intersections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berger MO (1990) Snake growing. In: Proceedings of the 1st European conference on computer vision. Lecture notes in computer science. Springer, Berlin Heidelberg New York, pp 570–572

  2. Cohen I, Cohen L, Ayache N (1992) Using deformable surfaces to segment 3-d images and infer differential structures. Comput Vision Graph Image Process Image Understand 56(2):242–263

    Google Scholar 

  3. Cohen L (1991) On active contour models and balloons. Vision Graph Image Process Image Understand 53(2):211–218

    MATH  Google Scholar 

  4. Cohen LD, Cohen I (1993) Finite element methods for active contour models and balloons for 2d and 3d images. IEEE Trans Patt Anal Mach Intell 15(11):1131–1147

    Article  Google Scholar 

  5. Chopp DL (1993) Computing minimal surfaces via level set curvature flow. J Comput Phys 106:77–91

    Article  MathSciNet  MATH  Google Scholar 

  6. Davatzikos CA, Prince JL (1995) An active contour model for mapping the cortex. IEEE Trans Med Imag 14(1):112–115

    Google Scholar 

  7. DeCarlo D, Metaxas D (1994) Blended deformable models. In: Proceedings of CVPR ’94, pp 566–572

  8. Delingette H, Montagnat J (2001) Shape and topology constraints on parametric active contours. Comput Vision Image Understand 83:140–171

    Article  MATH  Google Scholar 

  9. Gage M (1986) On an area-preserving evolution equation for plane curves. Contemp Math 51:51–62

    MATH  Google Scholar 

  10. Gupta A, O’Donnell T, Singh A (1994) Segmentation and tracking of cine cardiac mr and ct images using a 3d deformable model. In: Proceedings of the IEEE conference on computers and cardiology, pp 661–664

  11. Han X, Xu C, Prince JL (2001) A topology preserving deformable model using level sets. In: Proceedings of the conference on computer vision and pattern recognition, pp 765–770

  12. Hug J, Brechbühler C, Szekely G (1999) Tamed snake: a particle system for robust semi-automatic segmentation. In: Proceedings of the conference on medical image computing and computer-assisted intervention. Lecture notes in computer science, vol 1679. Springer, Berlin Heidelberg New York, pp 106–115

  13. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1:321–331

    Google Scholar 

  14. Kimia B, Tannenbaum A, Zucker S (1992) On the evolution of curves via a function of curvature i: the classical case. J Math Anal Appl 163:438–458

    MathSciNet  MATH  Google Scholar 

  15. Lachaud J-O, Montanvert A (1999) Deformable meshes with automatic topology changes for coarse-to-fine three-dimensional surface extraction. Med Image Anal 3(2):187–207

    Google Scholar 

  16. Lobregt S, Viergever M (1995) A discrete dynamic contour model. IEEE Trans Med Imag 14(1):12–23

    Article  Google Scholar 

  17. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3d surface reconstruction algorithm. In: Proceedings of SIGGRAPH ’87, pp 163–169

  18. McInerney T, Terzopoulos D (1995) Topologically adaptable snakes. In: Proceedings of the international conference on computer vision, pp 840–845

  19. McInerney T, Terzopoulos D (1996) Deformable models in medical image analysis: a survey. Med Image Anal 1(2):91–108

    Article  CAS  PubMed  Google Scholar 

  20. McInerney T, Terzopoulos D (1999) Topology adaptive deformable surfaces for medical image volume segmentation. IEEE Trans Med Imag 18(10):840–850

    Article  Google Scholar 

  21. McInerney T, Terzopoulos D (2000) T-snakes: topology adaptive snakes. Med Image Anal 4(2):73–91

    Article  Google Scholar 

  22. Miller JV, Breen DE, Lorensen WE, O’Bara RM, Wozny MJ (1991) Geometrically deformed models: a method for extracting closed geometric models from volume data. In: Proceedings of SIGGRAPH ’91, pp 217–226

  23. Osher SJ, Fedkiw RP (2002) Level set methods and dynamic implicit surfaces. Springer, Berlin Heidelberg New York

  24. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J Comput Phys 79(1):12–49

    MathSciNet  MATH  Google Scholar 

  25. Prêteux F, Rougon N (1998) Directional adaptive deformable models for segmentation. J Electron Imag 7(1):231–256

    Article  Google Scholar 

  26. Sethian JA (1996) A fast marching level set method for monotonically advancing fronts. Proc Natl Acad Sci 93(4):1591–1595

    Article  MATH  Google Scholar 

  27. Sethian JA (1999) Level set methods and fast marching methods. Cambridge University Press, Cambridge, UK

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Bischoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bischoff, S., Kobbelt, L. Parameterization-free active contour models with topology control . Visual Comp 20, 217–228 (2004). https://doi.org/10.1007/s00371-003-0228-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-003-0228-9

Keywords

Navigation