Skip to main content

Advertisement

Log in

Real-time snowing simulation

  • Special Issue
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

A snowing scene has a unique fascination for people due to its incomparable beauty. However, little work has been presented on the real-time generation of a dynamic snowing scene, partially due to the difficulty that the simulation of a dynamic snowing process involves the complex modeling of the wind field and the interaction between wind and snow. In this paper, by fully considering the physical characteristics of wind and snow, we construct a three-dimensional wind field based on the discrete form of the Boltzmann equation. According to the interaction laws between wind and snow, we simulate the falling of snow, deposition and erosion in 3D space. Experimental results show that realistic wind-driven snow scenes under different speeds of wind with different amounts of snowfall can be rendered in real-time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bang, B., Nielesen, A., Sundsbo, P.-A., Wiik, T.: Computer simulation of wind speed, wind pressure and snow accumulation around buildings (SNOW-SIM). Energ. Buildings 21(3), 235–243 (1994)

    Article  Google Scholar 

  2. Chapman, S., Cowling, T.-G.: The mathematical theory of non-uniform gases, 3rd edn. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  3. Chen, S., Doolen, G.-D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30(1), 329–364 (2001)

    Article  MathSciNet  Google Scholar 

  4. Chen, Y.-Y., Sun, H.-Q., Guo, B.-L., Wu, E.-H.: Modeling and rendering snowy natural scenery. Chinese J. Comput. 25(9), 916–922 (2002)

    Google Scholar 

  5. Corripio, J.-G., Durand, Y., Guyomarch, G., Merindol, L., Lecorps, D., Puglises, P.: Modelling and monitoring snow redistribution by wind. Cold Reg. Sci. Technol. 39(2/3), 93–104 (2004)

    Article  Google Scholar 

  6. Fearing, P.: Computer modeling of fallen snow. In: K. Akeley, J. White (eds.) Proceedings of ACM SIGGRAPH ’2000, pp. 37–46. ACM Press, New Orleans (2000)

    Google Scholar 

  7. Feldman, B.-E., O’Brien, J.-F.: Modeling the accumulation of wind-driven snow. Technical sketch. In: T. Appolloni (ed.) Proc. ACM SIGGRAPH 2002 Conference, Abstracts and Applications, TX, pp. 9–12. ACM Press, San Antonio (2002)

    Google Scholar 

  8. Haglund, H., Andersson, M., Anders, H.: Snow accumulation in real-time. In: M. Ollila (ed.) Proc. of SIGRAD’2002, pp. 11–15. Linkoping University Electronic Press, Norrkoping, Sweden, (2002)

    Google Scholar 

  9. Wejchert, J., Haumann, D.: Animation aerodynamics. Comput. Graphics 25(4), 19–22 (1991)

    Article  Google Scholar 

  10. Langer, M.-S., Zhang, L.-Q.: Rendering falling snow using an inverse Fourier transform. In: A.P. Rockwood, J. Hodgins (eds.) Proc. ACM SIGGRAPH’2003, pp. 58–64. ACM Press, San Diego, CA (2003)

    Google Scholar 

  11. Masselot, A., Chopard, B.: Lattice gas modeling of snow transport by wind. In: J. Dongarra, K. Madsen, J. Wasniewski (eds.) Proc. of Applied Parallel Computing, Computations in Physics, Chemistry and Engineering Science (PAPA), pp. 429–435. Springer, Lyngby, Denmark (1995)

    Google Scholar 

  12. Mei, R.-W., Wei, S.-Y., Yu, D.-Z., Luo, L.-S.: Lattice Boltzmann method for 3-D with curved boundary flows. J. Comput. Phys. 161(2), 680–699 (2000)

    Article  MATH  Google Scholar 

  13. Nishita, T., Iwasaki, H., Dobashi, Y., Nakamae, E.-A.: A modeling and rendering method for snow by using metaballs. Comput. Graph. Forum 16(3), 357–364 (1997)

    Article  Google Scholar 

  14. Ohlsson, P., Seipel, S.: Real-time rendering of accumulated snow. In: S. Seipel (ed.) SIGRAD 2004: Special theme – Environmental Visualization. Linkoping Electronic Conference Proceedings, pp. 25–32. Linkoping University Electronic Press, Gävle, Sweden (2004)

    Google Scholar 

  15. Reeves, W.-T., Ltd, L.: Particle systems – a technique for modeling a class of fuzzy objects. ACM Trans. on Graph. 2(2), 359–367 (1983)

    Article  Google Scholar 

  16. Sumner, R.-W., O’Brien, J.-F., Hodgins, J.-K.: Animating sand, mud, and snow. Comput. Graph. Forum 18(1), 17–26 (1999)

    Article  Google Scholar 

  17. Thomas, K.-T.: Large scale studies of development of snowdrifts around buildings. J. Wind Eng. Indust. Aerodyn. 91(6), 829–839 (2003)

    Article  Google Scholar 

  18. Wei, X.-M., Zhao, Y., Fan, Z., Li, W., Yoakum, S., Kaufman, A.: Blowing in the wind. In: D. Breen, M. Lin (eds.) Proc. Eurographics/SIGGRAPH Symposium on Computer Animation’2003, pp. 75–85. Eurographics Association, San Diego, CA (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Wang, Z., Xia, T. et al. Real-time snowing simulation. Visual Comput 22, 315–323 (2006). https://doi.org/10.1007/s00371-006-0012-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-006-0012-8

Keywords

Navigation