Skip to main content
Log in

Spectral volume rendering using GPU-based raycasting

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Traditional volume rendering does not incorporate a number of optical properties that are typically observed for semi-transparent materials, such as glass or water, in the real world. Therefore, we have extended GPU-based raycasting to spectral volume rendering based on the Kubelka–Munk theory for light propagation in parallel colorant layers of a turbid medium. This allows us to demonstrate the effects of selective absorption and dispersion in refractive materials, by generating volume renderings using real physical optical properties. We show that this extended volume rendering technique can be easily incorporated into a flexible framework for GPU-based volume raycasting. Our implementation shows a promising performance for a number of real data sets. In particular, we obtain up to 100 times the performance of a comparable CPU implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdul-Rahman, A., Chen, M.: Spectral Volume Rendering Based on the Kubelka-Munk Theory. Comput. Graph. Forum 24(3), 413–422 (2005)

    Article  Google Scholar 

  2. Baxter, W., Wendt, J., Lin, M.C.: IMPaSTo: A Realistic, Interactive Model for Paint. In: Proceedings of the 3rd International Symposium on Non-photorealistic Animation and Rendering, pp. 45–148 (2004)

  3. Bergner, S., Möller, T., Drew, M.S., Finlayson, G.D.: Interactive spectral volume rendering. In: Proceedings of IEEE Visualization, pp. 101–108 (2002)

  4. Bergner, S., Möller, T., Tory, M., Drew, M.: A Practical Approach to Spectral Volume Rendering. IEEE Trans. Vis. Comput. Graph. 11(2), 207–216 (2005)

    Article  Google Scholar 

  5. Boada, I., Navazo, I., Scopigno, R.: Multiresolution Volume Visualization with a Texture-based Octree. Visual Comput. 17(3), 185–197 (2001)

    Article  MATH  Google Scholar 

  6. Cabral, B., Cam, N., Foran, J.: Accelerated Volume Rendering and Tomographic Reconstruction using Texture Mapping Hardware. In: Proceedings of the 1994 Symposium on Volume Visualization, pp. 91–98 (1994)

  7. Cullip, T.J., Neumann, U.: Accelerating Volume Reconstruction With 3D Texture Hardware. Tech. Rep. TR93-027, University of North Carolina at Chapel Hill (1993)

  8. Curtis, C.J., Anderson, S.E., Seims, J.E., Fleischer, K.W., Salesin, D.H.: Computer-generated Watercolor. In: Proceedings of the 24th Annual ACM SIGGRAPH Conference, pp. 421–430 (1997)

  9. Dorsey, J., Hanrahan, P.: Modeling and Rendering of Metallic Patinas. In: Proceedings of the 23rd Annual ACM SIGGRAPH Conference, pp. 387–396 (1996)

  10. Engel, K., Kraus, M., Ertl, T.: High-Quality Pre-Integrated Volume Rendering Using Hardware-Accelerated Pixel Shading. In: Eurographics / SIGGRAPH Workshop on Graphics Hardware ’01, pp. 9–16 (2001)

  11. Glassner, A.S.: How to Derive a Spectrum from an RGB Triplet. IEEE Computer Graphics and Applications pp. 95–99 (1989)

  12. Glassner, A.S.: Principles of Digital Image Synthesis. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  13. Guthe, S., Wand, M., Gonser, J., Straßer, W.: Interactive Rendering of Large Volume Data Sets. In: Proceedings of IEEE Visualization ’02, pp. 53–60. IEEE Computer Society (2002)

  14. Haase, C., Meyer, G.: Modeling Pigmented Materials for Realistic Image Synthesis. ACM Trans. Graph. 11(4), 305–335 (1992)

    Article  MATH  Google Scholar 

  15. Hadwiger, M., Sigg, C., Scharsach, H., Bühler, K., Gross, M.: Real-Time Ray-Casting and Advanced Shading of Discrete Isosurfaces. In: Proceedings of Eurographics ’05, pp. 303–312 (2005)

  16. Hall, R.: Illumination and Color in Computer Generated Imagery. Springer-Verlag (1989)

  17. Hall, R.A., Greenburg, D.P.: A Testbed for Realistic Image Synthesis. IEEE Comput. Graph. Appl. 3(8), 10–20 (1983)

    Article  Google Scholar 

  18. Johnson, G.M., Fairchild, M.D.: Full-Spectral Color Calculations in Realistic Image Synthesis. IEEE Comput. Graph. Appl. 19(4), 47–53 (1999)

    Article  Google Scholar 

  19. Klein, T., Strengert, M., Stegmaier, S., Ertl, T.: Exploiting Frame-to-Frame Coherence for Accelerating High-Quality Volume Raycasting on Graphics Hardware. In: Proceedings of IEEE Visualization ’05, pp. 223–230. IEEE (2005)

  20. Kniss, J., Kindlmann, G., Hansen, C.: Multidimensional Transfer Functions for Interactive Volume Rendering. IEEE Trans. Vis. Comput. Graph. 8(3), 270–285 (2002)

    Article  Google Scholar 

  21. Kniss, J., Premoze, S., Hansen, C., Ebert, D.: Interactive Translucent Volume Rendering and Procedural Modeling. In: Proceedings of IEEE Visualization ’02, pp. 109–116 (2002)

  22. Krüger, J., Westermann, R.: Acceleration Techniques for GPU-based Volume Rendering. In: Proceedings of IEEE Visualization ’03, pp. 287–292 (2003)

  23. Kubelka, P.: New contributions to the optics of intensely light-scattering materials, Part II. Nonhomogeneous layers. J. Optical Soc. Am. 44, 330–355 (1954)

    Article  Google Scholar 

  24. Kubelka, P., Munk, F.: Ein Beitrag zur Optik der Farbanstriche. Z. Technische Physik 12, 593–601 (1931)

    Google Scholar 

  25. LaMar, E., Hamann, B., Joy, K.I.: Multiresolution Techniques for interactive Texture-based Volume Visualization. In: Proceedings of IEEE Visualization ’99, pp. 355–361 (1999)

  26. Li, W., Mueller, K., Kaufman, A.: Empty Space Skipping and Occlusion Clipping for Texture-based Volume Rendering. In: Proceedings of IEEE Visualization ’03, pp. 317–324 (2003)

  27. Max, N.: Optical Models for Direct Volume Rendering. IEEE Trans. Vis. Comput. Graph. 1(2), 99–108 (1995)

    Article  Google Scholar 

  28. Meyer, G.W.: Wavelength Selection for Synthetic Image Generation. Comput. Vision, Graph. Image Process. 41, 57–79 (1988)

    Article  Google Scholar 

  29. Noordmans, H., van der Voort, H., Smeulders, A.: Spectral Volume Rendering. IEEE Trans. Vis. Comput. Graph. 6(3), 196–207 (2000)

    Article  Google Scholar 

  30. NVIDIA Corporation: NVIDIA SDK 8.0. http://developer.nvidia.com/object/sdk_home.html (2004)

  31. Peercy, M.S.: Linear Color Representations for Full Spectral Rendering. ACM SIGGRAPH Comput. Graph. 27(3), 191–198 (1993)

    Google Scholar 

  32. Rezk-Salama, C., Engel, K., Bauer, M., Greiner, G., Ertl, T.: Interactive Volume Rendering on Standard PC Graphics Hardware using Multi-textures and Multi-stage Rasterization. In: Proceedings of the ACM SIGGRAPH/ EUROGRAPHICS Workshop on Graphics Hardware, pp. 109–118 (2000)

  33. Rodgman, D., Chen, M.: Refraction in Discrete Raytracing. In: Proceedings of Volume Graphics 2001, pp. 3–17. Springer, New York (2001)

    Google Scholar 

  34. Rodgman, D., Chen, M.: On Volume Denoising Filters for Visualizing Refraction. In: Proceedings of Vision, Modeling, and Visualization ’03, pp. 355–363 (2003)

  35. Röttger, S., Guthe, S., Weiskopf, D., Ertl, T.: Smart Hardware-Accelerated Volume Rendering. In: Proceedings of EG/IEEE TCVG Symposium on Visualization VisSym ’03, pp. 231–238 (2003)

  36. Rougeron, G., Péroche, B.: Color Fidelity in Computer Graphics: A Survey. Comput. Graph. Forum 17(1), 3–15 (1998)

    Article  Google Scholar 

  37. Rudolf, D., Mould, D., Neufeld, E.: Simulating Wax Crayons. In: Proceedings of the 11th Pacific Conference on Computer Graphics and Applications, pp. 163–172 (2003)

  38. Schlick, C.: A Survey of Shading and Reflectance Models. Comput. Graph. Forum 13(2), 121–131 (1994)

    Article  Google Scholar 

  39. Schuster, A.: Radiation Through a Foggy Atmosphere. J. Astrophysics 21, 1–22 (1905)

    Article  Google Scholar 

  40. Stegmaier, S., Strengert, M., Klein, T., Ertl, T.: A Simple and Flexible Volume Rendering Framework for Graphics-Hardware–based Raycasting. In: Proceedings of the International Workshop on Volume Graphics ’05, pp. 187–195 (2005)

  41. Weiler, M., Kraus, M., Merz, M., Ertl, T.: Hardware-Based Ray Casting for Tetrahedral Meshes. In: Proceedings of IEEE Visualization ’03, pp. 333–340 (2003)

  42. Westermann, R., Ertl, T.: Efficiently using Graphics Hardware in Volume Rendering Applications. In: SIGGRAPH ’98: Proceedings of the 25th annual Conference on Computer Graphics and interactive Techniques, pp. 169–177 (1998)

  43. Wyszecki, G., Stiles, W.S.: Color Science Concepts and Methods, Quantitative Data and Formulae. Wiley-Interscience Publication (1982)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Strengert.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strengert, M., Klein, T., Botchen, R. et al. Spectral volume rendering using GPU-based raycasting. Visual Comput 22, 550–561 (2006). https://doi.org/10.1007/s00371-006-0028-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-006-0028-0

Keywords

Navigation