Skip to main content
Log in

A vibrotactile approach to tactile rendering

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

While moving our fingertip over a fine surface we experience a sensation that gives us an idea of its properties. A satisfactory simulation of this feeling is still an unsolved problem. In this paper, we describe a rendering strategy based on vibrations that play an important role in the tactile exploration of fine surfaces. To produce appropriate excitation patterns we use an array of vibrating contactor pins. Similar to the colour model in computer graphics, we simulate arbitrary vibrations as a superposition of only two sinewaves. Each sinewave is intended for the excitation of a specific population of mechanoreceptors. We carried out first tests of our rendering strategy on Brownian surfaces of different fractal dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergmann, M., Herbst, I., von Wieding, R., Wolter, F.E.: Haptical rendering of rough surfaces using their fractal dimension. In: Proceedings of the First PHANToM Users Research Symposium, pp. 9–12. German Cancer Research Center, Heidelberg, Germany (1999)

    Google Scholar 

  2. Bernstein, L.E., Eberhardt, S.P., Demorest, M.E.: Single-channel vibrotactile supplements to visual perception of intonation and stress. J. Acoust. Soc. Am. 85, 397–405 (1989)

    Article  Google Scholar 

  3. Bolanowski, S.J., Gescheider, G.A., Verillo, R.T., Checkowsky, C.M.: Four channels mediate the mechanical aspects of touch. J. Acoust. Soc. Am. 84, 1680–1694 (1988)

    Article  Google Scholar 

  4. Cornsweet, T.N.: Visual Perception. Academic Press, New York (1970)

    Google Scholar 

  5. Falconer, K.J.: Fractal geometry: mathematical foundations and applications. Wiley, Chichester (1990)

    MATH  Google Scholar 

  6. Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.H.: Computer Graphics: Principles and Practice, 2nd edn. Addison-Wesley, Reading, MA (1996)

    MATH  Google Scholar 

  7. Gescheider, G.A., Bolanowski, S.J., Pope, J.V., Verillo, R.T.: A four-channel analysis of the tactile sensitivity on the fingertip: frequency selectivity, spatial summation, and temporal summation. Somatosens. Mot. Res. 19(2), 114–124 (2002)

    Article  Google Scholar 

  8. Gescheider, G.A., Bolanowski, S.J., Verrillo, R.T.: Some characteristics of tactile channels. Behav. Brain Res. 148, 35–40 (2004)

    Article  Google Scholar 

  9. Handley, C.: The analysis and reconstruction of repetitive textures. In: Proceedings: Computer Graphics International, pp. 273–276, IEEE (1998)

  10. Hollins, M., Bensmaïa, S.J., Washburn, S.: Vibrotactile adaption impairs discrimination of fine, but not coarse, textures. Somatosens. Mot. Res. 18(4), 253–262 (2001)

    Article  Google Scholar 

  11. Huang, G., Metaxas, D., Govindaraj, M.: Feel the ”fabric”: an audio-haptic interface. In: SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer animation, pp. 52–61. Eurographics Association (2003)

  12. Johnson, K.O.: The roles and functions of cutaneous mechanoreceptors. Curr. Opin. Neurobiol. 11, 455–461 (2001)

    Article  Google Scholar 

  13. Johnson, K.O., Yoshioka, T., Vega-Bermudez, F.: Tactile functions of mechanoreceptive afferents innervating the hand. J. Clin. Neurophysiol. 17(6), 539–558 (2000)

    Article  Google Scholar 

  14. Katz, D.: The World of Touch. Lawrence Erlbaum Associates, Mahwah, MJ (1989)

    Google Scholar 

  15. Kawabata, S.: The standardization and analysis of hand evaluation. Technical Report, The Hand Evaluation and Standardization Committee, The Textile Machinery Society of Japan (1980)

  16. Rao, A.R.: A Taxonomy for Texture Description and Identification, 1st edn. Springer, Berlin Heidelberg New York (1990)

    MATH  Google Scholar 

  17. Schulze, M.: Von computergraphischen zu haptischen Texturen. Virtual Reality für den Entwicklungsbereich Design/Styling in der Automobilindustrie. Ph.D. Thesis, Universität Hannover (2005)

  18. Summers, I.R., Chanter, C.M.: A broadband tactile array on the fingertip. J. Acoust. Soc. Am. 112(5), 2118–2126 (2002)

    Article  Google Scholar 

  19. Summers, I.R., Chanter, C.M., Southall, A.L., Brady, A.C.: Results from a tactile array on the fingertip. In: Proceedings of Eurohaptics 2001, pp. 26–28 (2001)

  20. Summers, I.R., Whybrow, J.J., Milnes, P., Brown, B.H., Stevens, J.C.: Tactile perception: comparison of two stimulation sites. J. Acoust. Soc. Am. 118(4), 2527–2534 (2005)

    Article  Google Scholar 

  21. Tsai, P.S., Shah, M.: Shape from shading using linear approximation. Image Vis. Comput. 12(8), 487–498 (1994)

    Article  Google Scholar 

  22. Verrillo, R.T., Fraioli, A.J., Smith, R.L.: Sensation magnitude of vibrotactile stimuli. Percept. Psychophys. 33, 379–387 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Allerkamp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allerkamp, D., Böttcher, G., Wolter, FE. et al. A vibrotactile approach to tactile rendering. TVC 23, 97–108 (2007). https://doi.org/10.1007/s00371-006-0031-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-006-0031-5

Keywords

Navigation