Skip to main content
Log in

A novel framework for physically based sculpting and animation of free-form solids

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents a new, physically based model for performing finite element simulation of deformable objects in which all quantities – strain, stress, displacement, etc. – are computed entirely in local frames of reference. In our framework, subdivision solids with non-homogeneous material properties, such as mass and deformation distributions, can be defined throughout continuous, volumetric domains. This capability enables an animator or virtual sculptor to exert fine-level control over deforming objects and to define a wide variety of physical behaviors. Furthermore, since all quantities pertinent to physical simulation are computed locally, our model facilitates both large-scale and small-scale deformations, as well as rigid or near-rigid transformations. We demonstrate applications of our framework in animation and interactive sculpting and show that interactive simulation of non-trivial, volumetric shapes is possible with our methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bajaj, C., Shaefer, S., Warren, J., Xu, G.: A subdivision scheme for hexahedral meshes. Visual Comput. 18(5–6), 343–356 (2002)

    Article  Google Scholar 

  2. Bathe, K.-J.: Finite Element Procedures. Prentice Hall, Englewood Cliffs, NJ (1996)

    Google Scholar 

  3. Bertram, M.: Biorthogonal wavelets for subdivision volumes. In: Proceedings of the Seventh ACM Symposium on Solid Modeling and Applications, pp. 72–82 (2002)

  4. Bertram, M.: Volume refinement fairing isosurfaces. In: Proceedings of IEEE Visualization 2004, pp. 449–456 (2004)

  5. Capell, S., Green, S., Curless, B., Duchamp, T., Popovic, Z.: A multiresolution framework for dynamic deformations. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 41–47 (2002)

  6. Chang, Y., Qin, H.: A framework for multi-dimensional adaptive subdivision objects. In: Proceedings of the Ninth ACM Symposium on Solid Modeling and Applications, pp. 123–134 (2004)

  7. Debunne, G., Desbrun, M., Cani, M., Barr, A. H.: Dynamic real-time deformations using space and time adaptive sampling. In: Computer Graphics (Proceedings of ACM SIGGRAPH 2001), pp. 31–36 (2001)

  8. Faloutsos, P., van de Panne, M., Terzopoulos, D.: Dynamic free-form deformations for animation synthesis. IEEE T. Vis. Comput. Graph. 3(3), 201–214 (1997)

    Article  Google Scholar 

  9. Hauth, M., Gross, J., Strasser, W.: Interactive physically based solid dynamics. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 17–27 (2003)

  10. Irving, G., Teran, J., Fedkiw, R.: Tetrahedral and hexahedral invertible finite elements. Graph. Models 68(2), 66–89 (2006)

    Article  MATH  Google Scholar 

  11. James, D. L., Pai, D. K.: ARTDEFO: Accurate Real Time Deformable Objects. In: Computer Graphics (Proceedings of ACM SIGGRAPH ’99), pp. 65–72, 1999

  12. Linsen, L., Pascucci, V., Duchaineau, M. A., Hamann, B., Joy, K. I.: Hierarchical representation of time-varying volume data with \(\sqrt[4]{2}\) subdivision and quadrilinear B-spline wavelets. In: Proceedings of the Tenth Pacific Conference on Computer Graphics and Applications, pp. 346–355 (2002)

  13. MacCracken, R., Joy, K. I.: Free-form deformations with lattices of arbitrary topology. In: Computer Graphics (Proceedings of ACM SIGGRAPH ’96), pp. 181–188 (1996)

  14. McDonnell, K. T., Chang, Y., Qin, H.: Interpolatory, solid subdivision of unstructured hexahedral meshes. Visual Comput. 20(6), 418–436 (2004)

    Article  Google Scholar 

  15. McDonnell, K. T., Qin, H., Wlodarczyk, R. A.: Virtual clay: A real-time sculpting system with haptic toolkits. In: Proceedings of 2001 ACM Symposium on Interactive 3D Graphics, pp. 179–190 (2001)

  16. Molino, N., Bridson, R., Teran, J., Fedkiw, R.: A crystalline, red green strategy for meshing highly deformable objects with tetrahedra. In: Proceedings of the 12th International Meshing Roundtable, pp. 103–114 (2003)

  17. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., Cutler, B.: Stable real-time deformations. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA) 2002, pp. 49–54 (2002)

  18. Ng-Thow-Hing, V., Fiume, E.: Application-specific muscle representations. In: Proceedings of Graphics Interface 2002, pp. 107–115 (2002)

  19. Pascucci, V., Bajaj, C.: Time critical isosurface refinement and smoothing. In: Proceedings of the 2000 IEEE Symposium on Volume Visualization, pp. 33–42 (2000)

  20. Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P.: Numerical Recipes in C++: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  21. Qin, H., Mandal, C., Vemuri, B. C.: Dynamic Catmull-Clark subdivision surfaces. IEEE T. Vis. Comput. Graph. 4(3), 215–229 (1998)

    Article  Google Scholar 

  22. Qin, H., Terzopoulos, D.: D-NURBS: A physics-based geometric design framework. IEEE T. Vis. Comput. Graph. 2(1), 85–96 (1996)

    Article  Google Scholar 

  23. Teran, J., Molino, N., Fedkiw, R., Bridson, R.: Adaptive physics based tetrahedral mesh generation using level sets. Eng. Comput. 21(1), 2–18 (2005)

    Article  Google Scholar 

  24. Teran, J., Sifakis, E., Blemker, S., Ng-Thow-Hing, V., Lau, C., Fedkiw, R.: Creating and simulating skeletal muscle from the Visible Human data set. IEEE T. Vis. Comput. Graph. 11(3), 317–328 (2005)

    Article  Google Scholar 

  25. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. Computer Graphics (Proceedings of ACM SIGGRAPH ’87) 21(4), 205–214 (1987)

    Article  Google Scholar 

  26. Weiler, K. J.: Topological Structures for Geometric Modeling. PhD thesis, Rensselaer Polytechnic Institute, 1986

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin T. McDonnell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonnell, K., Qin, H. A novel framework for physically based sculpting and animation of free-form solids. Visual Comput 23, 285–296 (2007). https://doi.org/10.1007/s00371-007-0096-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-007-0096-9

Keywords

Navigation