Skip to main content
Log in

Shape deformation with tunable stiffness

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The paper presents a 2D or 3D shape deformation method which incorporates global and local stiffness controls. First, a geometric object is embedded into a regular lattice and then the deformation is conducted on the lattice; thus, the method is independent of the underlying object representation. The lattice cells are organized as overlapping local rigid regions, and the region width could be regarded as a means of the global lattice stiffness control. For each region, there is a local stiffness coefficient to control the lattice deformation locally. During the deformation a nonlinear objective function is optimized to achieve the natural lattice deformation with the prescribed global and local stiffnesses. Then, the lattice deformation is passed to the embedded object through bilinear or trilinear interpolation. In this way we can deform the object in a more physically plausible way with tunable stiffness. Experimental results show that the method is intuitive and flexible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Au, O.K.C., Fu, H., Tai, C.L., Cohen-Or, D.: Handle-aware isolines for scalable shape editing. ACM Trans. Graph. (SIGGRAPH 2007) 26(3), 83 (2007)

    Article  Google Scholar 

  2. Au, O.K.C., Tai, C.L., Liu, L., Fu, H.: Dual Laplacian editing for meshes. IEEE Trans. Vis. Comput. Graph. 12(3), 386–395 (2006)

    Article  Google Scholar 

  3. Botsch, M., Pauly, M., Gross, M., Kobbelt, L.: PriMo: coupled prisms for intuitive surface modeling. In: SGP ’06: Proceedings of the Fourth Eurographics Symposium on Geometry Processing. Eurographics Association, Cagliari, Sardinia, Italy (2006)

    Google Scholar 

  4. Botsch, M., Pauly, M., Wicke, M., Gross, M.: Adaptive space deformations based on rigid cells. Comput. Graph. Forum (Eurographics 2007) 26(3), 339–347 (2007)

    Article  Google Scholar 

  5. Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE Trans. Vis. Comput. Graph. 14(1), 213–230 (2008)

    Article  Google Scholar 

  6. Davis, T.A.: UMFPACK: unsymmetric multifrontal sparse LU factorization package. http://www.cise.ufl.edu/research/sparse/umfpack/. Visit on 10.12.2007

  7. Gibson, S., Mirtich, B.: A survey of deformable modeling in computer graphics. Tech. Rep. No. TR-97-19, Mitsubishi Electric Research Lab., Cambridge (1997)

  8. Güdükbay, U., Özgüç, B., Tokad, Y.: A spring force formulation for elastically deformable models. Comput. Graph. 21(3), 335–346 (1997)

    Article  Google Scholar 

  9. Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A 4, 629–642 (1987)

    Article  Google Scholar 

  10. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.Y., Teng, S.H., Bao, H., Guo, B., Shum, H.Y.: Subspace gradient domain mesh deformation. ACM Trans. Graph. (SIGGRAPH 2006) 25(3), 1126–1134 (2006)

    Article  Google Scholar 

  11. Igarashi, T., Moscovich, T., Hughes, J.F.: As-rigid-as-possible shape manipulation. ACM Trans. Graph. (SIGGRAPH 2005) 24(3), 1134–1141 (2005)

    Article  Google Scholar 

  12. James, D.L., Barbič, J., Twigg, C.D.: Squashing cubes: automating deformable model construction for graphics. In: SIGGRAPH ’04: ACM SIGGRAPH 2004 Sketches, p. 38. ACM Press, Los Angeles, CA (2004)

    Google Scholar 

  13. James, D.L., Pai, D.K.: ArtDefo: accurate real time deformable objects. In: SIGGRAPH ’99: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 65–72. ACM Press, Los Angeles, CA (1999)

    Chapter  Google Scholar 

  14. Kraevoy, V., Sheffer, A.: Mean-value geometry encoding. Int. J. Shape Model. 12(1), 29–46 (2006)

    Article  MATH  Google Scholar 

  15. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: Akeley, K. (ed.) SIGGRAPH ’00: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 165–172. ACM Press, New Orleans, LA (2000)

    Chapter  Google Scholar 

  16. Lipman, Y., Sorkine, O., Levin, D., Cohen-Or, D.: Linear rotation-invariant coordinates for meshes. ACM Trans. Graph. (SIGGRAPH 2005) 24(3), 479–487 (2005)

    Article  Google Scholar 

  17. Müller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based on shape matching. ACM Trans. Graph. (SIGGRAPH 2005) 24(3), 471–478 (2005)

    Article  Google Scholar 

  18. Nealen, A., Müller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based deformable models in computer graphics. In: Eurographics: State of the Art Report. Eurographics Association, Dublin, Ireland (2005)

    Google Scholar 

  19. Platt, J.C., Barr, A.H.: Constraints methods for flexible models. ACM Comput. Graph. (SIGGRAPH 1988) 22(4), 279–288 (1988)

    Article  Google Scholar 

  20. Popa, T., Julius, D., Sheffer, A.: Material-aware mesh deformations. In: SMI ’06: Proceedings of the IEEE International Conference on Shape Modeling and Applications 2006, p. 22. IEEE Computer Society, Matsushima, Japan (2006)

    Google Scholar 

  21. Rivers, A.R., James, D.L.: Fastlsm: fast lattice shape matching for robust real-time deformation. ACM Trans. Graph. (SIGGRAPH 2007) 26(3), 82 (2007)

    Article  Google Scholar 

  22. Schaefer, S., McPhail, T., Warren, J.: Image deformation using moving least squares. ACM Trans. Graph. (SIGGRAPH 2006) 25(3), 533–540 (2006)

    Article  Google Scholar 

  23. Schiwietz, T., Georgii, J., Westermann, R.: Freeform image. In: Proceedings of Pacific Graphics 2007, pp. 27–36. IEEE Computer Society, Maui, Hawaii (2007)

    Google Scholar 

  24. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. ACM Comput. Graph. (SIGGRAPH 1986) 20(4), 151–160 (1986)

    Article  Google Scholar 

  25. Shoemake, K., Duff, T.: Matrix animation and polar decomposition. In: Booth, K.S., Fournier, A. (eds.) Proceedings of the Conference on Graphics Interface ’92, pp. 258–264. Morgan Kaufmann Publishers Inc., Vancouver, British Columbia (1992)

    Google Scholar 

  26. Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: SGP ’07: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, pp. 109–116. Eurographics Association, Barcelona, Spain (2007)

    Google Scholar 

  27. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian surface editing. In: SGP ’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. ACM Press, Nice, France (2004)

    Google Scholar 

  28. Sumner, R.W., Schmid, J., Pauly, M.: Embedded deformation for shape manipulation. ACM Trans. Graph. (SIGGRAPH 2007) 26(3), 80 (2007)

    Article  Google Scholar 

  29. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. ACM Comput. Graph. (SIGGRAPH 1987) 21(4), 205–214 (1987)

    Article  Google Scholar 

  30. Weng, Y., Xu, W., Wu, Y., Zhou, K., Guo, B.: 2d shape deformation using nonlinear least squares optimization. Visual Comput. 22(9), 653–660 (2006)

    Article  Google Scholar 

  31. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.Y.: Mesh editing with Poisson-based gradient field manipulation. ACM Trans. Graph. (SIGGRAPH 2004) 23(3), 644–651 (2004)

    Article  Google Scholar 

  32. Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., Shum, H.Y.: Large mesh deformation using the volumetric graph Laplacian. ACM Trans. Graph. (SIGGRAPH 2005) 24(3), 496–503 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jieqing Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, W., Feng, J. & Jin, X. Shape deformation with tunable stiffness. Visual Comput 24, 495–503 (2008). https://doi.org/10.1007/s00371-008-0230-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-008-0230-3

Keywords

Navigation