Skip to main content

Advertisement

Log in

Estimation of mechanical parameters of deformable solids from videos

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we present a new method to estimate the mechanical parameters of soft bodies directly from videos of solids getting deformed under external user action. Our method requires one standard camera, a deformable solid made of homogeneous material, and a regular light source. We make estimations using an inverse method based on a quasi-static FEM simulation and a visual error metric. The result is a set of two parameters, the Young modulus and the Poisson ratio, that can be used for more complex simulations, or force feedback applications like virtual surgery, for example. We also present a new device for capturing the external forces applied on the deformable solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belytschko, T., Parimi, C.: Structured extended finite element methods for solids defined by implicit surfaces. Numer. Meth. Eng. 56, 609–635 (2003)

    Article  MATH  Google Scholar 

  2. Benech, N., Negreira, C.A.: Longitudinal and lateral low frequency head wave analysis in soft media. J. Acoust. Soc. Am. 117(6), 3424–3431 (2005)

    Article  Google Scholar 

  3. Duriez, C., Dubois, F., Andriot, C., Kheddar, A.: Realistic haptic rendering of interacting deformable objects in virtual environments. IEEE Trans. Vis. Comput. Graph. 12(1), 36–47 (2006)

    Article  Google Scholar 

  4. Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Analysis Mach. Intell. 13, 891–906 (1991)

    Article  Google Scholar 

  5. Hall, T.J., Bilgen, M., Insana, M.F., Krouskop, T.A.: Phantom materials for elastography. Ultrason. Ferroelectr. Freq. Control, IEEE Trans. 44(6), 1355–1365 (1997)

    Article  Google Scholar 

  6. Kirkpatrick, G., Vecchi, O.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  7. Lang, J., Pai, D.K., Woodham, R.J.: Acquisition of elastic models for interactive simulation. Int. J. Robotic Res. 21(8), 713–734 (2002)

    Article  Google Scholar 

  8. Miller, K., Chinzei, K.: Constitutive modeling of brain tissue: experiment and theory. J. Biomech. 30, 1115–1121 (1997)

    Article  Google Scholar 

  9. Ostrander, L.E., Lee, B.Y.: Testing viscoelastic properties of biological soft tissue. Eng. Medicine Biol. Soc. 14, 107–109 (1992)

    Google Scholar 

  10. Pai, D., Lang, J., Lloyd, J., Woodham, R.: ACME, a telerobotic active measurement facility. Exp. Robotics VI 250, 391–400 (2000)

    Article  Google Scholar 

  11. Samani, A., Bishop, J., Plewes, D.B.: A constrained modulus reconstruction technique for breast cancer assessment. IEEE Trans. Med. Imaging 20, 877–885 (2001)

    Article  Google Scholar 

  12. Samani, A., Plewes, D.: An inverse problem solution for measuring the elastic modulus of intact ex vivo breast tissue tumours. Phys. Medicine Biol. 52(5), 1247–1260 (2007)

    Article  Google Scholar 

  13. Soza, G., Grosso, R., Nimsky, C., Hastreiter, P., Fahlbusch, R., Greiner, G.: Determination of the elasticity parameters of brain tissue with combined simulation and registration. Int. J. Med. Robotics Comput. Assist. Surg. 1(3), 87–95 (2005)

    Article  Google Scholar 

  14. Zhang, M., Zheng, Y.P., Mak, A.F.T.: Estimating the effective Young’s modulus of soft tissues from indentation tests—nonlinear finite element analysis of effects of friction and large deformation. Med. Eng. Phys. 19(6), 512–517 (1997)

    Article  Google Scholar 

  15. Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proceedings of ACM SIGGRAPH 98, pp. 43–54. ACM Press (1998)

  16. Becker, M., Teschner, M.: Robust and efficient estimation of elasticity parameters using the linear finite element method. In: Proceedings of Simulation and Visualization, pp. 15–28. Magdeburg, Germany (2007)

  17. Bhat, K., Twigg, C., Hodgins, J., Khosla, P., Popovic, Z., Seitz, S.: Estimating cloth simulation parameters from video. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 2003), pp. 37–51. ACM Press (2003)

  18. Boivin, S., Gagalowicz, A.: Image-based rendering of diffuse, specular and glossy surfaces from a single image. In: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pp. 107–116. ACM Press (2001)

  19. Bruyns, C., Ottensmeyer, M.P.: Measurements of soft-tissue mechanical properties to support development of a physically based virtual animal model. In: MICCAI ’02: Proceedings of the 5th International Conference on Medical Image Computing and Computer-Assisted Intervention—Part I, pp. 282–289. Springer, London (2002)

    Chapter  Google Scholar 

  20. Chen, E.J., Novakofski, J., Jenkins, W.K., O’Brien, Jr. W.D.: Young’s modulus measurements of soft tissues with application to elasticity imaging. Ultrason. Ferroelectr. Freq. Control, IEEE Trans. 43(1), 191–194 (1996)

    Article  Google Scholar 

  21. Delalleau, A., Josse, G., Lagarde, J.M., Zahouani, H., Bergheau, J.M.: Characterization of the mechanical properties of skin by inverse analysis combined with the indentation test. J. Biomech. 39, 1603–1610 (2006)

    Article  Google Scholar 

  22. Kauer, M., Vuskovic, V., Dual, J., Szekely, G., Bajka, M.: Inverse finite element characterization of soft tissues. In: MICCAI ’01: Proceedings of the 4th International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 128–136. Springer, London (2001)

    Google Scholar 

  23. Liu, H., Shi, P.: Meshfree particle method. In: ICCV ’03: Proceedings of the Ninth IEEE International Conference on Computer Vision, pp. 289–296. IEEE Computer Society, Washington (2003)

    Google Scholar 

  24. Yu, Y., Debevec, P., Malik, J., Hawkins, T.: Inverse global illumination: recovering reflectance models of real scenes from photographs. In: Proceedings of ACM SIGGRAPH, pp. 215–224 (1999)

  25. Revell, J.: Computer vision elastography. PhD Thesis, Computer Science, University of Bristol (2005)

  26. ARToolKit. http://www.hitl.washington.edu/projects/shared_space/

  27. Ascension Technology Corporation. Flock of birds. http://www.ascension-tech.com/products/flockofbirds.php

  28. Hewlett Packard. MP-3130 Video Projector. http://h10032.www1.hp.com/ctg/Manual/c00063469.pdf

  29. Instron. Universal Materials Testing Machines. http://www.instron.us/wa/products/universal_material

  30. SCAIME. K1107 force sensor. http://www.scaime.com/Acrobat3/force/FT-K1107-FE-0999.pdf

  31. SensAble Technologies. Phantom series. http://www.sensable.com/products-haptic-devices.htm

  32. Smooth-On. Ecoflex Liquid Rubber. http://www.smooth-on.com/liqrubr.htm

  33. SONY. Handycam DCR-TRV950E. http://www.sony.fr/view/ShowProduct.action?product=DCR-TRV950E

  34. Vicon. Motion capture systems. http://www.vicon.com/

  35. Zwick. Universal hardness tester. http://www.globalspec.com/FeaturedProducts/Detail/ZwickUSA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Syllebranque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syllebranque, C., Boivin, S. Estimation of mechanical parameters of deformable solids from videos. TVC 24, 963–972 (2008). https://doi.org/10.1007/s00371-008-0273-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-008-0273-5

Keywords

Navigation