Skip to main content
Log in

A high dynamic range rendering pipeline for interactive applications

In search for perceptual realism

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Realistic images can be computed at interactive frame rates for Computer Graphics applications. Meanwhile, High Dynamic Range (HDR) rendering has a growing success in video games and virtual reality applications, as it improves the image quality and the player’s immersion feeling. In this paper, we propose a new method, based on a physical lighting model, to compute in real time a HDR illumination in virtual environments. Our method allows to re-use existing virtual environments as input, and computes HDR images in photometric units. Then, from these HDR images, displayable 8-bit images are rendered with a tone mapping operator and displayed on a standard display device. The HDR computation and the tone mapping are implemented in OpenSceneGraph with pixel shaders. The lighting model, together with a perceptual tone mapping, improves the perceptual realism of the rendered images at low cost. The method is illustrated with a practical application where the dynamic range of the virtual environment is a key rendering issue: night-time driving simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alferdink, J.W.A.M.: Target detection and driving behaviour measurements in a driving simulator at mesopic light levels. Ophthalmic Physiolog. Opt. 26, 264–280 (2006)

    Article  Google Scholar 

  2. Artusi, A., Bittner, J., Wimmer, M., Wilkie, A.: Delivering interactivity to complex tone mapping operators. In: Proceedings of Eurographics Symposium on Rendering, pp. 38–45 (2003)

  3. Ashikhmin, M., Goyal, J.: A reality check for tone mapping operators. ACM Trans. Appl. Percept. 3(4), 399–411 (2006)

    Article  Google Scholar 

  4. Colbert, M., Pattanaik, S.N., Krivanek, J.: BRDF-Shop: Creating physically correct bidirectional reflectance distribution functions. IEEE Comput. Graph. Appl. 26(1), 30–36 (2006)

    Article  Google Scholar 

  5. Crytek: The Crytek web page. www.crytek.com/technology/cryengine-2/specifications/ (2009)

  6. Debevec, P.: Tutorial: Image-based lighting. IEEE Comput. Graph. Appl. 22(2), 26–34 (2002)

    Article  Google Scholar 

  7. Durand, F., Dorsey, J.: Interactive tone mapping. In: Proceedings of Eurographics Symposium on Rendering, pp. 219–230 (2000)

  8. Ferwerda, J.A.: Three varieties of realism in computer graphics. In: Proceedings SPIE Human Vision and Electronic Imaging, pp. 290–297 (2003)

  9. Ferwerda, J.A., Pattanaik, S.N., Shirley, P., Greenberg, D.P.: A model of visual adaptation for realistic image synthesis. In: Proceedings of SIGGRAPH, pp. 249–258 (1996)

  10. Giannopulu, I., Bertin, R., Brémond, R., Espié, S., Kapoula, Z.: Visuomotor strategies using driving simulators in virtual and pre-recorded environment. Adv. Transp. Stud. 14, 49–56 (2008)

    Google Scholar 

  11. Grave, J., Brémond, R.: A tone mapping algorithm for road visibility experiments. ACM Trans. Appl. Percept. 5(2), art. 12 (2008)

    Google Scholar 

  12. Hubert, R., Canestrelli, M., Richard, J.P.: Le laboratoire de photométrie pour les études de visibilité et de la qualité des équipements de la route. Bull. Liaison Lab. Ponts Chaussées 176, 19–27 (1993) (A photometry laboratory dedicated to road equipement measurements)

    Google Scholar 

  13. Hunt, R.W.G.: The Reproduction of Color, 5th ed. Fountain Press (1995)

  14. Irawan, P., Ferwerda, J.A., Marschner, S.R.: Perceptually based tone mapping of high dynamic range image streams. In: Proceedings of Eurographics Symposium on Rendering, pp. 231–242 (2005)

  15. Kakimoto, M., Matsuoka, K., Nishita, T., Naemura, T., Harashima, H.: Glare generation based on wave optics. Comput. Graph. Forum 24(2), 185–193 (2005)

    Article  Google Scholar 

  16. Kawase, M.: Practical implementation of high dynamic range rendering. In: Game Developers Conference (2004)

  17. Krawczyk, G., Myszkowski, K., Seidel, H.P.: Perceptual effects in real-time tone mapping. In: Proceedings of SCCG, pp. 195–202. ACM, New York (2005)

    Chapter  Google Scholar 

  18. Kuang, J., Yamaguchi, H., Liu, C., Johnson, G.M., Fairchild, M.D.: Evaluating HDR rendering algorithms. ACM Trans. Appl. Percept. 3(3), 286–308 (2007)

    Google Scholar 

  19. Ledda, P., Chalmers, A., Troscianko, T., Seetzen, H.: Evaluation of tone mapping operators using a high dynamic range display. In: Proceedings of SIGGRAPH, pp. 640–648. ACM, New York (2005)

    Google Scholar 

  20. Luksh, C.: Realtime HDR rendering. Tech. Rep., Institute of Computer Graphics and Algorithms, TU Vienna (2007)

  21. Mantiuk, R., Daly, S., Myszkowski, K., Seidel, H.P.: Predicting visible differences in high dynamic range images. In: Model and its calibration. In: Proceedings of SPIE Human Vision and Electronic Imaging X, pp. 204–214. SPIE (2005)

  22. McNamara, A.: Exploring visual and automatic measures of perceptual fidelity in real and simulated imagery. ACM Trans. Appl. Percept. 3(3), 217–238 (2006)

    Article  Google Scholar 

  23. Mitchell, J., McTaggart, G., Green, C.: Shading in valve’s source engine. In: Proceedings of SIGGRAPH, pp. 129–142. ACM, New York (2006)

    Google Scholar 

  24. Nakamae, E., Kaneda, K., Okamoto, T., Nishita, T.: A lighting model aiming at drive simulators. Comput. Graph. 24(4), 395–404 (1990)

    Article  Google Scholar 

  25. nVidia: The OptiX web page. www.nvidia.com/object/optix (2009)

  26. OpenSceneGraph: The OpenSceneGraph website. www.openscenegraph.org/projects/osg (2009)

  27. Pattanaik, S.N., Ferwerda, J.A., Fairchild, M.D., Greenberg, D.P.: A multiscale model of adaptation and spatial vision for realistic image display. In: Proceedings of SIGGRAPH, pp. 287–298. ACM, New York (1998)

    Google Scholar 

  28. Pattanaik, S.N., Tumblin, J., Yee, H., Greenberg, D.P.: Time-dependent visual adaptation for fast realistic image display. In: Proceedings of SIGGRAPH, pp. 47–54. ACM, New York (2000)

    Chapter  Google Scholar 

  29. Petit, J., Brémond, R.: Interactive high dynamic range rendering for virtual reality applications. In: Proceedings of Virtual Reality and Software Technology, Kyoto, Japan, pp. 251–252. ACM, New York (2009) (poster abstract)

    Google Scholar 

  30. Phong, T.B.: Illumination for computer generated pictures. Commun. ACM 18(6), 311–317 (1975)

    Article  Google Scholar 

  31. Reinhard, E., Ward, G., Pattanaik, S.N., Debevec, P.: High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting. Morgan Kaufmann, New York (2005)

    Google Scholar 

  32. Ritschel, T., Ihrke, M., Frisvad, J.R., Coppens, J., Myszkowski, K., Seidel, H.P.: Temporal glare: Real-time dynamic simulation of the scattering in the human eye. Comput. Graph. Forum 28(2), 183–192 (2009)

    Article  Google Scholar 

  33. Scheel, A., Stamminger, M., Seidel, H.P.: Tone reproduction for interactive walkthroughs. Comput. Graph. Forum 19(3), 301–312 (2000)

    Article  Google Scholar 

  34. Schoettle, B., Sivak, M., Flannagan, M.J., Kosmatka, W.J.: A market-weighted description of low-beam headlighting patterns in Europe. Tech. Rep., University of Michigan Transportation Research Institute (2003)

  35. Seetzen, H., Heidrich, W., Stuerzlinger, W., Ward, G., Whitehead, L., Trentacoste, M., Ghosh, A., Vorozcovs, A.: High dynamic range display systems. ACM Trans. Graph. 23(3), 760–768 (2004)

    Article  Google Scholar 

  36. Spencer, G., Shirley, P., Zimmerman, K., Greenberg, D.P.: Physically based glare effect for digital images. In: Proceedings of SIGGRAPH, pp. 325–334. ACM, New York (1995)

    Google Scholar 

  37. Tevs, A.: The osgPPU web page. projects.tevs.eu/osgppu (2009)

  38. Tumblin, J., Rushmeier, H.: Tone reproduction for realistic images. IEEE Comput. Graph. Appl. 13(6), 42–48 (1993)

    Article  Google Scholar 

  39. Wandell, B.: Foundations of vision. Sinauer associates, Sunderland, MA, USA (1995)

  40. Ward, G.: A contrast based scale-factor for image display. In: Graphic Gems IV, pp. 415–421. Academic Press Professional, San Diego (1994)

    Google Scholar 

  41. Ward, G., Rushmeier, H., Piatko, C.: A visibility matching tone reproduction operator for high dynamic range scenes. IEEE Trans. Vis. Comput. Graph. 3(4), 291–306 (1997)

    Article  Google Scholar 

  42. Winkler, S.: Digital Video Quality: Vision Models and Metrics. Wiley, New York (2005)

    Google Scholar 

  43. Yoshida, A., Blanz, V., Myszkowski, K., Seidel, H.P.: Perceptual evaluation of tone mapping operators with real world scenes. In: Proceedings of the SPIE, vol. 5666, pp. 192–203 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Brémond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petit, J., Brémond, R. A high dynamic range rendering pipeline for interactive applications. Vis Comput 26, 533–542 (2010). https://doi.org/10.1007/s00371-010-0430-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-010-0430-5

Keywords

Navigation