Skip to main content
Log in

A fully geometric approach for developable cloth deformation simulation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present a new method for simulation of inextensible cloth subjected to a conservative force (e.g., the gravity) and collision-free constraint. Traditional algorithms for cloth simulation are all physically-based in which cloth is treated as an elastic material with some stiffness coefficient(s). These algorithms break down ultimately if one tries to set this stiffness coefficient to infinite which corresponds to inextensible cloth. The crux of the method is an algorithm for interpolating a given set of arbitrary points or space curves by a smooth developable mesh surface. We formulate this interpolation problem as a mesh deformation process that transforms an initial developable mesh surface, e.g., a planar figure, to a final mesh surface that interpolates the given points (called anchor points). During the deformation process, all the triangle elements in the intermediate meshes are kept isometric to their initial shapes, while the potential energy due to the conservative force is reduced gradually. The collision problem is resolved by introducing dynamic anchor points owing to the collision during the deformation. Notwithstanding its simplicity, the proposed method has shown some promising efficacy for simulation of inextensible cloth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Au, O.K.C.: Differential techniques for scalable and interactive mesh editing. Ph.D. thesis, Hong Kong University of Science and Technology (2007)

  2. Au, O.K.C., Fu, H., Tai, C.L., Cohen-Or, D.: Handle-aware isolines for scalable shape editing. ACM Trans. Graph. 26(3), 83:1–83:10 (2007)

    Article  Google Scholar 

  3. Aumann, G.: Interpolation with developable Bézier patches. Comput. Aided Geom. Des. 20(8–9), 601–619 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aumann, G.: Degree elevation and developable Bézier surfaces. Comput. Aided Geom. Des. 21(7), 661–670 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Computer Graphics Proceedings. Annual Conference Series, pp. 43–54 (1998)

  6. Bo, P., Wang, W.: Geodesic-controlled developable surfaces for modeling paper bending. Comput. Graph. Forum 26(3), 329–338 (2007) (EuroGraphics 2007)

    Article  Google Scholar 

  7. Breen, D.E., House, D.H., Wozny, M.J.: Predicting the drape of woven cloth using interacting particles. In: Computer Graphics Proceedings. Annual Conference Series, pp. 365–372 (1994)

  8. Bridson, R., Fedkiw, R., Anderson, J.: Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21(3), 594–603 (2002)

    Article  Google Scholar 

  9. Choi, K.J., Ko, H.S.: Stable but responsive cloth. In: Computer Graphics Proceedings. Annual Conference Series, pp. 604–611 (2002)

  10. Choi, K.J., Ko, H.: Research problems in clothing simulation. Comput. Aided Des. 37(6), 585–592 (2005)

    Article  Google Scholar 

  11. Chu, C., Séquin, C.: Developable Bézier patches: Properties and design. Comput. Aided Des. 34(7), 511–527 (2002)

    Article  Google Scholar 

  12. Desbrun, M., Schröder, P., Barr, A.: Interactive animation of structured deformable objects. In: Graphics Interface, pp. 1–8 (1999)

  13. doCarmo, M.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)

    Google Scholar 

  14. English, E., Bridson, R.: Animating developable surfaces using nonconforming elements. ACM Trans. Graph. 27(3), 66:1–66:5 (2008)

    Article  Google Scholar 

  15. Frey, W.: Boundary triangulations approximating developable surfaces that interpolate a closed space curve. Int. J. Found. Comput. Sci. 13, 285–302 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Frey, W.: Modeling buckled developable surface by triangulation. Comput. Aided Des. 36(4), 299–313 (2004)

    Article  Google Scholar 

  17. Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., Grinspun, E.: Efficient simulation of inextensible cloth. ACM Trans. Graph. 26(3), 49:1–49:7 (2007)

    Article  Google Scholar 

  18. Julius, D., Kraevoy, V., Sheffer, A.: D-charts: Quasi-developable mesh segmentation. Comput. Graph. Forum 24(3), 581–590 (2005)

    Article  Google Scholar 

  19. Lang, J., Röschel, O.: Developable (1,n)-Bézier surfaces. Comput. Aided Geom. Des. 9(4), 291–298 (1992)

    Article  MATH  Google Scholar 

  20. Liu, Y., Pottmann, H., Wallner, J., Yang, Y.L., Wang, W.: Geometric modeling with conical meshes and developable surfaces. ACM Trans. Graph. 25(3), 681–689 (2006)

    Article  Google Scholar 

  21. Liu, Y., Tang, K., Joneija, A.: Modeling dynamic developable meshes by Hamilton principle. Comput. Aided Des. 39(9), 719–731 (2007)

    Article  Google Scholar 

  22. Mitani, J., Suzuki, H.: Making papercraft toys from meshes using strip-based approximate unfolding. ACM Trans. Graph. 23(3), 259–263 (2005)

    Article  Google Scholar 

  23. Pottmann, H., Farin, G.E.: Developable rational Bézier and b-spline surfaces. Comput. Aided Geom. Des. 12(5), 513–531 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pottmann, H., Wallner, J.: Computational Line Geometry. Springer, Berlin (2001)

    MATH  Google Scholar 

  25. Provot, X.: Deformation constraints in a mass-spring model to describe rigid cloth behavior. In: Graphics Interface, pp. 147–154 (1995)

  26. Provot, X.: Collision and self-collision handling in cloth model dedicated to design garment. In: Graphics Interface, pp. 177–189 (1997)

  27. Rose, K., Sheffer, A., Wither, J., Cani, M.P., Thibert, B.: Developable surfaces from arbitrary sketched boundaries. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, vol. 257, pp. 163–172 (2007)

  28. Shatz, I., Tal, A., Leifman, G.: Paper craft models from meshes. Vis. Comput. 22(9), 825–834 (2006)

    Article  Google Scholar 

  29. Terzopoulos, D., Platt, J., Barr, A., Fleischert, K.: Elastically deformable models. In: Proceedings of ACM SIGGRAPH, vol. 21, pp. 205–214 (1987)

  30. Volino, P., Magnenat-Thalmann, N.: An evolving system for simulating clothes on virtual actors. IEEE Trans. Graph. Appl. 16(5), 42–51 (1996)

    Article  Google Scholar 

  31. Volino, P., Magnenat-Thalmann, N.: Comparing efficiency of integration methods for cloth simulation. In: Proceedings of Computer Graphics International 2001, pp. 265–272 (2001)

  32. Volino, P., Magnenat-Thalmann, N.: Stop-and-go cloth draping. Vis. Comput. 23(8), 669–677 (2007)

    Article  Google Scholar 

  33. Volino, P., Courchesne, M., Magnenat-Thalmann, N.: Versatile and efficient techniques for simulating cloth and other deformable objects. In: Proceedings of ACM SIGGRAPH, vol. 29, pp. 137–144 (1995)

  34. Wang, C.C.L., Tang, K.: Achieving developability of a polygonal surface by minimum deformation: a study of global and local optimization approaches. Vis. Comput. 20(8–9), 521–539 (2004)

    Article  Google Scholar 

  35. Wang, C.C.L., Tang, K.: Optimal boundary triangulations of an interpolating ruled surface. ASME J. Comput. Inform. Sci. Eng. 5(4), 291–301 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M., Tang, K. A fully geometric approach for developable cloth deformation simulation. Vis Comput 26, 853–863 (2010). https://doi.org/10.1007/s00371-010-0467-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-010-0467-5

Keywords

Navigation