Skip to main content
Log in

Skeleton-based control of fluid animation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present a skeleton-based control method for fluid animation. Our method is designed to provide an easy and intuitive control approach while producing visually plausible fluid behavior. In our method, users are allowed to control animated fluid with skeleton keyframes. Expected results are then obtained by driving fluid towards a sequence of targets specified in these keyframes. In order to solve for an optimal driving solution, we propose a keyframe matching model based on the transportation principle. Moreover, to ensure that the fluid actors move as rigid bodies while preserving liquid properties during animation, we introduce an approach of driving solid-like liquid motion. Finally, we embed the skeleton-based control method into the standard fluid animation, and apply it to control fluid actors’ motion as well as liquid shape deformation. Experimental results show that our method can generate natural-looking interesting fluid behavior with little additional cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Enright, D., Marschner, S., Fedkiw, R.: Animation and rendering of complex water surfaces. In: SIGGRAPH ’02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 736–744. ACM Press, New York (2002)

    Chapter  Google Scholar 

  2. Stam, J.: Stable fluids. In: SIGGRAPH ’99: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 121–128. ACM Press/Addison-Wesley, New York (1999)

    Chapter  Google Scholar 

  3. Carlson, M., Mucha, P.J., Turk, G.: Rigid fluid: animating the interplay between rigid bodies and fluid. In: SIGGRAPH ’04: Proceedings of the 31th Annual Conference on Computer Graphics and Interactive Techniques, pp. 377–384. ACM Press, New York (2004)

    Google Scholar 

  4. Selle, A., Rasmussen, N., Fedkiw, R.: A vortex particle method for smoke, water and explosions. In: SIGGRAPH ’05: Proceedings of the 32th Annual Conference on Computer Graphics and Interactive Techniques, pp. 910–914. ACM Press, New York (2005)

    Google Scholar 

  5. Losasso, F., Talton, J., Kwatra, N., Fedkiw, R.: Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. Vis. Comput. Graph. 14(4), 797–804 (2008)

    Article  Google Scholar 

  6. Foster, N., Metaxas, D.: Controlling fluid animation. In: CGI ’97: Proceedings of the 1997 Conference on Computer Graphics International, p. 178. IEEE Computer Society, Washington (1997)

    Chapter  Google Scholar 

  7. Foster, N., Fedkiw, R.: Practical animation of liquids. In: SIGGRAPH ’01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 23–30. ACM Press, New York (2001)

    Chapter  Google Scholar 

  8. Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., Fedkiw, R.: Directable photorealistic liquids. In: SCA ’04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 193–202. Eurographics Association, Aire-la-Ville (2004)

    Chapter  Google Scholar 

  9. Pighin, F., Cohen, J.M., Shah, M.: Modeling and editing flows using advected radial basis functions. In: SCA ’04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 223–232. Eurographics Association, Aire-la-Ville (2004)

    Chapter  Google Scholar 

  10. Schpok, J., Dwyer, W.T., Ebert, D.S.: Modeling and animating gases with simulation features. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 97–106 (2005)

  11. Angelidis, A., Neyret, F., Singh, K., Nowrouzezahrai, D.: A controllable, fast and stable basis for vortex based smoke simulation. In: SCA ’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 25–32. Eurographics Association, Aire-la-Ville (2006)

    Google Scholar 

  12. Kim, Y., Machiraju, R., Thompson, D.: Path-based control of smoke simulations. In: SCA ’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 33–42. Eurographics Association, Aire-la-Ville (2006)

    Google Scholar 

  13. Lamorlette, A., Foster, N.: Structural modeling of flames for a production environment. In: SIGGRAPH ’02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 729–735. ACM Press, New York (2002)

    Chapter  Google Scholar 

  14. Treuille, A., McNamara, A., Popović, Z., Stam, J.: Keyframe control of smoke simulations. In: SIGGRAPH ’03: Proceedings of the 30th Annual Conference on Computer Graphics and Interactive Techniques, pp. 716–723. ACM Press, New York (2003)

    Google Scholar 

  15. McNamara, A., Treuille, A., Popović, Z., Stam, J.: Fluid control using the adjoint method. In: SIGGRAPH ’04: Proceedings of the 31th Annual Conference on Computer Graphics and Interactive Techniques, pp. 449–456. ACM Press, New York (2004)

    Google Scholar 

  16. Fattal, R., Lischinski, D.: Target-driven smoke animation. In: SIGGRAPH ’04: Proceedings of the 31th Annual Conference on Computer Graphics and Interactive Techniques, pp. 441–448. ACM Press, New York (2004)

    Google Scholar 

  17. Shi, L., Yu, Y.: Taming liquids for rapidly changing targets. In: SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 229–236. ACM Press, New York (2005)

    Chapter  Google Scholar 

  18. Thürey, N., Keiser, R., Pauly, M., Rüde, U.: Detail-preserving fluid control. In: SCA ’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 7–12. Eurographics Association, Aire-la-Ville (2006)

    Google Scholar 

  19. Cornea, N.D., Min, P.: Curve-skeleton properties, applications, and algorithms. IEEE Trans. Vis. Comput. Graph. 13(3), 530–548 (2007)

    Article  Google Scholar 

  20. Yoshizawa, S., Belyaev, A., Seidel, H.P.: Skeleton-based variational mesh deformations. Comput. Graph. Forum (Proc. EUROGRAPHICS) 26(3), 255–264 (2007)

    Article  Google Scholar 

  21. Cornea, N., Silver, D., Yuan, X., Balasubramanian, R.: Computing hierarchical curve-skeletons of 3D objects. Vis. Comput. 21(11), 945–955 (2005)

    Article  Google Scholar 

  22. Hillier, F.S., Lieberman, G.J.: Introduction to Operations Research. McGraw-Hill Science/Engineering/Math., New York (2005)

    Google Scholar 

  23. Dantzig, George B.: Linear programming and extensions. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  24. Reinfeld, N.V., Vogel, W.R.: Mathematical Programming. Prentice-Hall, Englewood Cliffs (1958)

    Google Scholar 

  25. Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 154–159. Eurographics Association, Aire-la-Ville (2003)

    Google Scholar 

  26. Pharr, P.H.A.R.R., Humphreys, G.: Physically Based Rendering: From Theory to Implementation (The Interactive 3D Technology Series). Morgan Kaufmann, San Mateo (2004)

    Google Scholar 

  27. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. USA 93(4), 1591–1595 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guijuan Zhang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(13.3 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G., Zhu, D., Qiu, X. et al. Skeleton-based control of fluid animation. Vis Comput 27, 199–210 (2011). https://doi.org/10.1007/s00371-010-0526-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-010-0526-y

Keywords

Navigation