Skip to main content
Log in

Combined MR imaging towards subject-specific knee contact analysis

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

A combined magnetic resonance (MR) imaging method has been proposed to investigate individual’s knee functionality quantitatively under weight-bearing condition. High resolution MR data were acquired first to reconstruct the subject-specific anatomical model. A dynamic MR acquisition was obtained afterwards to record the motion of knee joint. A tri-rigid registration was applied to retrieve the knee joint motion, leading to a 12 degree-of-freedom (DoF) knee functional model. Using this model, the tibiofemoral contact mechanism was studied and analysed in both 2D and 3D. A mathematical definition of contact points of cartilage surfaces is given by modelling these surfaces as manifolds. It is believed that such subject-specific motion of contact points on cartilage surfaces of femur and two tibia plateaus can provide valuable insights for clinical applications such as knee replacement surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed, A.M., Burke, D.L.: In-vitro measurement of static pressure distribution in synovial joints–part i: Tibial surface of the knee. J. Biomech. Eng. 105(3), 216–225 (1983)

    Article  Google Scholar 

  2. Arndt, A., Westblad, P., Winson, I., Hashimoto, T., Lundberg, A.: Ankle and subtalar kinematics measured with intracortical pins during the stance phase of walking. Foot Ankle Int. 25(5), 357–364 (2004)

    Google Scholar 

  3. Besier, T.F., Draper, C.E., Gold, G.E., Beaupré, G.S., Delp, S.L.: Patellofemoral joint contact area increases with knee flexion and weight-bearing. J. Orthop. Res. 23(2), 345–350 (2005)

    Article  Google Scholar 

  4. Cohen, Z.A., McCarthy, D.M., Kwak, S.D., Legrand, P., Fogarasi, F., Ciaccio, E.J., Ateshian, G.A.: Knee cartilage topography, thickness, and contact areas from MRI: in-vitro calibration and in-vivo measurements. Osteoarthr. Cartil. 7(1), 95–109 (1999). doi:10.1053/joca.1998.0165

    Article  Google Scholar 

  5. DeFrate, L.E., Sun, H., Gill, T.J., Rubash, H.E., Li, G.: In vivo tibiofemoral contact analysis using 3D MRI-based knee models. J. Biomech. 37(10), 1499–1504 (2004). doi:10.1016/j.jbiomech.2004.01.012

    Article  Google Scholar 

  6. Draper, C.E., Santos, J.M., Kourtis, L.C., Besier, T.F., Fredericson, M., Beaupré, G.S., Gold, G.E., Delp, S.L.: Feasibility of using real-time MRI to measure joint kinematics in 1.5 T and open-bore 0.5 T systems. J. Magn. Reson. Imaging 28(1), 158–166 (2008). doi:10.1002/jmri.21413

    Article  Google Scholar 

  7. Freeman, M.A.R., Pinskerova, V.: The movement of the normal tibio-femoral joint. J. Biomech. 38(2), 197–208 (2005). doi:10.1016/j.jbiomech.2004.02.006

    Article  Google Scholar 

  8. Fukubayashi, T., Kurosawa, H.: The contact area and pressure distribution pattern of the knee: A study of normal and osteoarthrotic knee joints. Acta Orthop. Scand. 51(1), 871–879 (1980)

    Article  Google Scholar 

  9. Hill, P.F., Vedi, V., Williams, A., Iwaki, H., Pinskerova, V., Freeman, M.A.: Tibiofemoral movement 2: the loaded and unloaded living knee studied by MRI. J. Bone Jt. Surg., Br. 82(8), 1196–1198 (2000)

    Article  Google Scholar 

  10. Hosseini, A., de Velde, S.K.V., Kozanek, M., Gill, T.J., Grodzinsky, A.J., Rubash, H.E., Li, G.: In-vivo time-dependent articular cartilage contact behavior of the tibiofemoral joint. Osteoarthr. Cartil. 18(7), 909–916 (2010). doi:10.1016/j.joca.2010.04.011

    Article  Google Scholar 

  11. Iwaki, H., Pinskerova, V., Freeman, M.A.: Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J. Bone Jt. Surg., Br. 82(8), 1189–1195 (2000)

    Article  Google Scholar 

  12. Johal, P., Williams, A., Wragg, P., Hunt, D., Gedroyc, W.: Tibio-femoral movement in the living knee. a study of weight bearing and non-weight bearing knee kinematics using ‘interventional’ MRI. J. Biomech. 38(2), 269–276 (2005)

    Article  Google Scholar 

  13. Karrholm, J., Brandsson, S., Freeman, M.A.: Tibiofemoral movement 4: changes of axial tibial rotation caused by forced rotation at the weight-bearing knee studied by RSA. J. Bone Jt. Surg., Br. 82(8), 1201–1203 (2000)

    Article  Google Scholar 

  14. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: SGP ’06: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, pp. 61–70. Eurographics Association, Aire-la-Ville (2006)

    Google Scholar 

  15. Kline, M.: Note on elementary vector analysis and on an application to differential geometry. Am. Math. Mon. 43(9), 555–562 (1936)

    Article  MathSciNet  Google Scholar 

  16. Li, G., Gil, J., Kanamori, A., Woo, S.L.: A validated three-dimensional computational model of a human knee joint. J. Biomech. Eng. 121(6), 657–662 (1999)

    Article  Google Scholar 

  17. Li, G., Wuerz, T.H., DeFrate, L.E.: Feasibility of using orthogonal fluoroscopic images to measure in vivo joint kinematics. J. Biomech. Eng. 126(2), 314–318 (2004)

    Article  Google Scholar 

  18. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. SIGGRAPH Comput. Graph. 21(4), 163–169 (1987)

    Article  Google Scholar 

  19. Mint Medical: MITK 3M3 (2009). http://mint-medical.de/productssolutions/mitk3m3/mitk3m3/

  20. Morooka, T., Hamai, S., Hiromasa, M., Takeshi, S., Hidehiko, H., Benjamin, J.F., Yukihide, I., Scott, A.B.: Dynamic activity dependence of in vivo normal knee kinematics. J. Orthop. Res. 26(4), 428–434 (2008)

    Article  Google Scholar 

  21. MRC UK: Ethics and research guidance (2010). http://www.mrc.ac.uk/Ourresearch/Ethicsresearchguidance

  22. Nakagawa, S., Kadoya, Y., Todo, S., Kobayashi, A., Sakamoto, H., Freeman, M.A., Yamano, Y.: Tibiofemoral movement 3: full flexion in the living knee studied by MRI. J. Bone Jt. Surg., Br. 82(8), 1199–1200 (2000)

    Article  Google Scholar 

  23. Palastanga, N., Field, D., Soames, R. (eds.): The lower limb. In: Anatomy and Human Movement: Structure and Function, pp. 356–395. Butterworth-Heinemann, Edinburgh (2006)

    Google Scholar 

  24. Pinskerova, V., Johal, P., Nakagawa, S., Sosna, A., Williams, A., Gedroyc, W., Freeman, M.A.R.: Does the femur roll-back with flexion? J. Bone Jt. Surg., Br. 86(6), 925–931 (2004)

    Article  Google Scholar 

  25. Struik, D.J.: Curves. In: Lectures on Classical Differential Geometry, pp. 1–25. Dover, New York (1961)

    Google Scholar 

  26. Visual Computing Lab - STI - CNR: MeshLab (2009). http://meshlab.sourceforge.net/

  27. Williams, A., Logan, M.: Understanding tibio-femoral motion. Knee 11(2), 81–88 (2004)

    Article  Google Scholar 

  28. Wilson, D.R., McWalter, E.J., Johnston, J.D.: The measurement of joint mechanics and their role in osteoarthritis genesis and progression. Med. Clin. North Am. 93(1), 67–82 (2009). doi:10.1016/j.mcna.2008.08.004

    Article  Google Scholar 

  29. Wretenberg, P., Ramsey, D.K., Németh, G.: Tibiofemoral contact points relative to flexion angle measured with MRI. Clin. Biomech. 17(6), 477–485 (2002)

    Article  Google Scholar 

  30. Zuppinger, H.: Die aktive Flexion im unbelasteten Kniegelenk. Anat. Embryol. 25, 701–764 (1904)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bailiang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, B., Lambrou, T., Offiah, A. et al. Combined MR imaging towards subject-specific knee contact analysis. Vis Comput 27, 121–128 (2011). https://doi.org/10.1007/s00371-010-0535-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-010-0535-x

Keywords

Navigation