Skip to main content
Log in

Subject-specific knee joint model: Design of an experiment to validate a multi-body finite element model

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The availability of a validated subject-specific model of the knee joint would be extremely useful for the orthopaedic surgeon in evaluating the biomechanics of the joint of a patient, especially when suspecting an injury of one or more components.

The aim of this paper was to describe a procedure designed and developed to validate a subject-specific model of the human knee. The proposed approach considers the use of clinical images to create a multi-body finite element model of a healthy knee. The same joint must undergo an experimental test aimed at collecting the data necessary to validate the model predictions. Therefore, the experimental set-up must be designed to monitor all the degrees of freedom of the joint, allowing the replication of the loading conditions in silico with a finite element (FE) model.

At the moment, an animal model is used to verify the accuracy and repeatability of the developed procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parenti-Castelli, V., Leardini, A., Di Gregorio, R., O’Connor, J.J.: On the modeling of passive motion of the human knee joint by means of equivalent planar and spatial parallel mechanisms. Auton. Robots 16, 219–232 (2004)

    Article  Google Scholar 

  2. Chen, E., Ellis, R.E., Bryant, J.T., Rudan, J.F.: A computational model of postoperative knee kinematics. Med. Image Anal. 5, 317–330 (2001)

    Article  Google Scholar 

  3. Caruntu, D.I., Hefzy, M.S.: 3-D anatomically based dynamic modeling of the human knee to include tibio-femoral and patellofemoral joints. J. Biomech. Eng. 126, 44–53 (2004)

    Article  Google Scholar 

  4. Shin, C.S., Chaudhari, A.M., Andriachi, T.P.: The influence of deceleration forces on ACL strain during single-leg landing: a simulation study. J. Biomech. 40, 1145–1152 (2007)

    Article  Google Scholar 

  5. Elias, J.J., Faust, A.F., Chu, Y.H., Chao, E.Y., Andrew, J., Cosgarea, A.J.: The soleus muscle acts as an agonist for the anterior cruciate ligament: an in vitro experimental study. Am. J. Sports Med. 31, 241–246 (2003)

    Google Scholar 

  6. Withrow, T.J., Huston, L.J., Wojtys, E.M., Ashton-Miller, J.A.: The relationship between quadriceps muscle force, knee flexion, and anterior cruciate ligament strain in an in vitro simulated jump landing. Am. J. Sports Med. 34, 269–274 (2006)

    Article  Google Scholar 

  7. Withrow, T.J., Huston, L.J., Wojtys, E.M., Ashton-Miller, J.A.: Effect of varying hamstring tension on anterior cruciate ligament strain during in vitro impulsive knee flexion and compression. Am. J. Sports Med. 90, 815–823 (2008)

    Google Scholar 

  8. Amis, A.A., Bull, A.M., Gupte, C.M., Hijazi, I., Race, A., Robinson, J.R.: Biomechanics of the PCL and related structures: posterolateral, posteromedial and meniscofemoral ligaments. Knee Surg. Sports. Traumatol. Arthrosc. 11, 271–281 (2003)

    Article  Google Scholar 

  9. Kanamori, A., Sakane, M., Zeminski, J., Rudy, T.W., Woo, S.L.: In-situ force in the medial and lateral structures of intact and ACL-deficient knees. J. Orthop. Sci. 5, 567–571 (2000)

    Article  Google Scholar 

  10. Griffith, C.J., Wijdicks, C.A., LaPrade, R.F., Armitage, B.M., Johansen, S., Engebretsen, L.: Force measurements on the posterior oblique ligament and superficial medial collateral ligament proximal and distal divisions to applied loads. Am. J. Sports Med. 37, 140–148 (2009)

    Article  Google Scholar 

  11. Griffith, C.J., LaPrade, R.F., Johansen, S., Armitage, B., Wijdicks, C., Engebretsen, L.: Medial knee injury: Part 1, static function of the individual components of the main medial knee structures. Am. J. Sports Med. 37, 1762–1770 (2009)

    Article  Google Scholar 

  12. Wijdicks, C.A., Griffith, C.J., LaPrade, R.F., Spiridonov, S.I., Johansen, S., Armitage, B.M., Engebretsen, L.: Medial knee injury: Part 2, load sharing between the posterior oblique ligament and superficial medial collateral ligament. Am. J. Sports Med. 37, 1771–1776 (2009)

    Article  Google Scholar 

  13. Bull, A.M., Kessler, O., Alam, M., Amis, A.A.: Changes in knee kinematics reflect the articular geometry after arthroplasty. Clin. Orthop. Relat. Res. 466, 2491–2499 (2008)

    Article  Google Scholar 

  14. Noyes, F.R., Grood, E.S., Suntay, W.J., Butler, D.L.: The three dimensional laxity of the anterior cruciate deficient knee as determined by clinical laxity tests. Iowa Orthop. J. 3, 32–44 (1983)

    Google Scholar 

  15. Markolf, K.L., Mensch, J.S., Amstutz, H.C.: Stiffness and laxity of the knee–the contributions of the supporting structures. A quantitative in vitro study. J. Bone Joint Surg. 58, 583–594 (1976)

    Google Scholar 

  16. Woo, S.L.-Y., Debski, R.E., Wong, E.K., Yagi, M., Tarinetli, D.: Use of robotic technology for diathrodialjoint research. J. Sci. Med. Sport 2, 283–297 (1999)

    Article  Google Scholar 

  17. Gabriel, M.T., Wong, E.K., Woo, S.L., Yagi, M., Debski, R.E.: Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. J. Orthop. Res. 22, 85–89 (2004)

    Article  Google Scholar 

  18. Kato, Y., Ingham, S.J., Linde-Rosen, M., Smolinski, P., Horaguchi, T., Fu, F.H.: Biomechanics of the porcine triple bundle anterior cruciate ligament. Knee Surg. Sports Traumatol. Arthrosc. 18, 20–25 (2010)

    Article  Google Scholar 

  19. Ralis, Z.A.: Freezing of orthopaedic specimens before mechanical testing. J. Bone Joint Surg. Br. 71, 55–57 (1989)

    Google Scholar 

  20. Nikolaou, P.K., Seaber, A.V., Glisson, R.R., Ribbeck, B.M., Bassett, F.H.: Anterior cruciate ligament allograft transplantation. Long-term function, histology, revascularization, and operative technique. Am. J. Sports Med. 14, 348–360 (1986)

    Article  Google Scholar 

  21. Woo, S.L., Orlando, C.A., Camp, J.F., Akeson, W.H.: Effects of postmortem storage by freezing on ligament tensile behavior. J. Biomech. 19, 399–404 (1986)

    Article  Google Scholar 

  22. Leitschuh, P.H., Doherty, T.J., Taylor, D.C., Brooks, D.E., Ryan, J.B.: Effects of postmortem freezing on tensile failure properties of rabbit extensor digitorum longus muscle tendon complex. J. Orthop. Res. 14, 830–833 (1996)

    Article  Google Scholar 

  23. Clavert, P., Kempf, J.F., Bonnomet, F., Boutemy, P., Marcelin, L., Kahn, J.L.: Effects of freezing/thawing on the biomechanical properties of human tendons. Surg. Radiol. Anat. 23, 259–262 (2001)

    Article  Google Scholar 

  24. Roos, P.J., Neu, C.P., Hull, M.L., Howell, S.M.: A new tibial coordinate system improves the precision of anterior-posterior knee laxity measurements: a cadaveric study using Roentgen stereophotogrammetric analysis. J. Orthop. Res. 23, 327–333 (2005)

    Article  Google Scholar 

  25. Bull, A.M., Amis, A.A.: Knee joint motion: description and measurement. Proc. Inst. Mech. Eng. H 212, 357–372 (1998)

    Article  Google Scholar 

  26. Iwaki, H., Pinskerova, V., Freeman, M.A.: Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J. Bone Joint Surg. Br. 82, 1189–1195 (2000)

    Article  Google Scholar 

  27. Fuss, F.K.: Anatomy and function of the cruciate ligaments of the domestic pig (Sus scrofa domestica): a comparison with human cruciates. J. Anat. 178, 11–20 (1991)

    Google Scholar 

  28. Ohman, C., Baleani, M., Viceconti, M.: Repeatability of experimental procedures to determine mechanical behaviour of ligaments. Acta Bioeng. Biomech. 11, 19–23 (2009)

    Google Scholar 

  29. Heimann, T., Chung, F., Lamecker, H., Delingette, H.: Subject-specific ligament models: towards real-time simulation of the knee joint. In: Computational Biomechanics for Medicine. Springer, Berlin (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Öhman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Öhman, C., Espino, D.M., Heinmann, T. et al. Subject-specific knee joint model: Design of an experiment to validate a multi-body finite element model. Vis Comput 27, 153–159 (2011). https://doi.org/10.1007/s00371-010-0537-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-010-0537-8

Keywords

Navigation