Skip to main content
Log in

Approximate straightest path computation and its application in parameterization

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper proposes an approaching method to compute the straightest path between two vertices on meshes. An initial cutting plane is first constructed using the normal information of the source and destination vertices. Then an optimal cutting plane is iteratively created by comparing with previous path distance. Our study shows that the final straightest path based on this optimal cutting plane is more accurate and insensitive to the mesh boundary. Furthermore, we apply the straightest path result to compute the measured boundary in the parameter domain for mesh parameterization, and we obtain a new computing formula for vertex stretch in the planar parameterization. Experimental results show that our parameterization method can effectively reduce distortions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Verma, V., Snoeyink, J.: Reducing the memory required to find a geodesic shortest path on a large mesh. In: Proceedings of the 17th ACM SIGSPATIAL Conference on Advances in Geographic Information Systems, pp. 227–235 (2009)

    Chapter  Google Scholar 

  2. Peyre, G., Cohen, L.: Geodesic computations for fast and accurate surface remeshing and parameterization. Prog. Nonlinear Differ. Equ. Appl. 63, 157–171 (2005)

    Article  MathSciNet  Google Scholar 

  3. Lee, H., Tong, Y., Desbrun, M.: Geodesics-based one-to-one parameterization of 3D triangle meshes. IEEE Multimed. 12(1), 27–33 (2005)

    Article  Google Scholar 

  4. Polthier, K., Schmies, M.: Straightest geodesics on polyhedral surfaces. In: Mathematical Visualization, pp. 366–382. Springer, Berlin (1998)

    Google Scholar 

  5. Lee, S., Han, J., Lee, H.: Straightest paths on meshes by cutting planes. In: Proceedings of Geometric Modeling and Processing. LNCS, vol. 4077, pp. 609–615 (2006)

    Chapter  Google Scholar 

  6. Sheffer, A., Praun, E., Rose, K.: Mesh parameterization methods and their applications. Comput. Graph. Vis. 2, 105–171 (2006)

    Article  Google Scholar 

  7. Sander, P., Snyder, J., Gortler, S., et al.: Texture mapping progressive meshes. In: Proceedings of ACM SIGGRAPH, pp. 409–416 (2001)

    Google Scholar 

  8. Praun, E., Hoppe, H.: Spherical parameterization and remeshing. In: Proceedings of ACM SIGGRAPH, pp. 340–349 (2003)

    Google Scholar 

  9. He, Y., Wang, H., Fu, C., et al.: A divide-and-conquer approach for automatic polycube map construction. Comput. Graph. 33(3), 369–380 (2009)

    Article  Google Scholar 

  10. Eck, M., Derose, T., Duchamp, T., et al.: Multiresolution analysis of arbitrary meshes. In: Proceedings of ACM SIGGRAPH, pp. 173–182 (1995)

    Google Scholar 

  11. Desbrun, M., Meyer, M., Alliez, P.: Intrinsic parameterizations of surface meshes. In: Proceedings of Eurographics, pp. 209–218 (2002)

    Google Scholar 

  12. Floater, M.: Parameterization and smooth approximation of surface triangulations. Comput. Aided Geom. Des. 14(3), 231–250 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Floater, M.: Mean value coordinates. Comput. Aided Geom. Des. 20(1), 19–27 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lee, Y., Kim, H.S., Lee, S.: Mesh parameterization with a virtual boundary. Comput. Graph. 26(5), 677–686 (2002)

    Article  Google Scholar 

  15. Mitchell, J., Mount, D., Papadimitriou, C.: The discrete geodesic problem. SIAM J. Comput. 16(4), 647–668 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chen, J., Han, Y.: Shortest paths on a polyhedron. In: Proceedings of 6th Symposium on Computational Geometry, pp. 360–369 (1990)

    Chapter  Google Scholar 

  17. Surazhsky, V., Surazhsky, T., Kirsanov, D., et al.: Fast exact and approximate geodesics on meshes. In: Proceedings of ACM SIGGRAPH, pp. 553–560 (2005)

    Google Scholar 

  18. Xin, S., Wang, G.: Improving Chen & Han’s algorithm on the discrete geodesic problem. ACM Trans. Graph. 28(4), 107 (2009)

    Article  Google Scholar 

  19. Kanai, T., Suzuki, H.: Approximate shortest path on a polyhedral surface and its applications. Comput. Aided Des. 33(11), 801–811 (2001)

    Article  MATH  Google Scholar 

  20. Kimmel, R., Sethian, J.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. USA 95(15), 8431–8435 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Yoshizawa, S., Belyaev, A., Seidel, H.: A fast and simple stretch-minimizing mesh parameterization. In: Proceedings of Shape Modeling International, pp. 200–208 (2004)

    Chapter  Google Scholar 

  22. Hormann, K., Polthier, K., Sheffer, A. Mesh parameterization: theory and practice. In: ACM SIGGRAPH Asian 2008 Course Notes, pp. 1–81 (2008)

    Chapter  Google Scholar 

  23. Liu, L., Zhang, L., Xu, Y., Gotsman, C., Gortler, S.: A local/global approach to mesh parameterization. Comput. Graph. Forum 27(5), 1495–1504 (2008)

    Article  Google Scholar 

  24. Ben-Chen, M., Gotsman, C., Bunin, G.: Conformal flattening by curvature prescription and metric scaling. Comput. Graph. Forum 27(2), 449–458 (2008)

    Article  Google Scholar 

  25. Springborn, B., Schroder, P., Pinkall, U.: Conformal equivalence of triangle meshes. ACM Trans. Graph. 27(3), 1–11 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Jin, Y., Jin, X. et al. Approximate straightest path computation and its application in parameterization. Vis Comput 28, 63–74 (2012). https://doi.org/10.1007/s00371-011-0600-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0600-0

Keywords

Navigation