Skip to main content
Log in

Birefringence: calculation of refracted ray paths in biaxial crystals

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The phenomenon of birefringence may be observed when light arrives at an anisotropic crystal surface and refracts through it, causing the incident light ray to split into two rays; these become polarized in mutually orthogonal directions, and two images are formed. The principal goal of this paper is the study of the directional issues involved in the behavior of light when refracting through a homogeneous, non-participating medium, including both isotropic and anisotropic media (uniaxial and, for the first time, biaxial). The paper focuses on formulating and solving the non-linear algebraic system that is obtained when the refraction process is simulated using the geometric model of Huygens. The main contribution focuses on the case of biaxial media. In the case of uniaxial media, we rely on symbolic calculus techniques to formulate and solve the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Char, B.W., et al.: Maple V. Maple Library Reference Manual. Springer, New York (1992)

    Google Scholar 

  2. Char, B.W., et al.: Maple V. Maple V Language Reference Manual. Springer, New York (1992)

    Google Scholar 

  3. Born, M., Wolf, E.: Principles of Optics, 7th edn. Cambridge University Press, New York (1999)

    Google Scholar 

  4. Buchanan, A.M., Fitzgibbon, A.W.: Damped newton algorithms for matrix factorization with missing data. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 316–322 (2005)

    Chapter  Google Scholar 

  5. Denflhard, P.: Numerical Methods for Non-linear Problems. Springer, Berlin (2004)

    Google Scholar 

  6. Dirkse, S.P., Ferris, M.C.: A pathsearch damped newton method for computing general equilibria. Ann. Oper. Res. 68(2), 211–232 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Epureanu, B.I., Greenside, H.S.: Fractal basins of attraction associated with a damped Newton’s method. SIAM Rev. 40(1), 1–8 (1998)

    Article  MathSciNet  Google Scholar 

  8. Felippa, C.A.: Nonlinear Finite Element Methods Course, Chap. 21. http://www.colorado.edu/engineering/cas/courses.d/NFEM.d/, October 2010

  9. Gay, P.: The Crystallyne State: An Introduction. Longman, Harlow/New York (1972)

    Google Scholar 

  10. Guy, S., Soler, C.: Graphics gems revisited, fast and physically based rendering of gemstones. ACM Trans. Graph. 23(3), 231–238 (2004)

    Article  Google Scholar 

  11. Kaufmann, S., Montalvo, A.: The application of a modified damped newton method for the simulation of vapor-liquid stagewise processes. Comput. Chem. Eng. 7(2), 93–103 (1983)

    Article  Google Scholar 

  12. Latorre Andrés, P.M.: Modelos físicos de iluminación: Simulaciones por computador. PhD thesis, Universidad de Zaragoza, Zaragoza, Spain (2001)

  13. Matveev, A.N.: Optics. Mir, Moscow (1988)

    Google Scholar 

  14. Ortega, J., Rheinboldt, W.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  15. Press, W.H., et al.: Numerical Recipes in C. The Art of Scientific Computing, 2nd edn. Cambridge University Press, New York (1995)

    Google Scholar 

  16. Chipman, R.A., McClain, S.C.: Polarization ray tracing in anisotropic optically active media. Proc. SPIE Int. Soc. Opt. Eng. 1746, 107–118 (1992)

    Google Scholar 

  17. Stone, J.M.: Radiation and Optics: an Introduction to Classical Theory. McGraw-Hill, New York (1963)

    Google Scholar 

  18. Szivessy, G.: Handbuch der Physik, Chap. Kristalloptik, p. 840. H. Geiger, K. Scheel, Berlin (1928)

    Google Scholar 

  19. Tannenbaum, D.C., Tannenbaum, P., Wozny, M.J.: Polarization and birefringence considerations in rendering. In: Computer Graphics. Proceedings, Annual Conference Series, ACM SIGGRAPH, pp. 221–222 (1994)

    Google Scholar 

  20. Ueberhuber, C.W.: Numerical Computation. Methods, Software, and Analysis. Springer, Berlin (1997)

    MATH  Google Scholar 

  21. Weidlich, A., Wilkie, A.: Realistic rendering of birefringence in uniaxial crystals. ACM Trans. Graph. 27(1), 1–12 (2008)

    Article  Google Scholar 

  22. Yi, D.: Damped Newton’s method for image restoration. Trends Math. 9(1), 109–113 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Latorre.

Additional information

This research has been funded by the Spanish Ministry of Science and Technology (project TIN2007-63025) and the Aragón Government (projects OTRI 2009/0411 and CTPP05/09).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latorre, P., Seron, F.J. & Gutierrez, D. Birefringence: calculation of refracted ray paths in biaxial crystals. Vis Comput 28, 341–356 (2012). https://doi.org/10.1007/s00371-011-0619-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0619-2

Keywords

Navigation